Skip to main content
Log in

New amphiphilic terpolymers of N-vinylpyrrolidone with poly(ethylene glycol) methyl ether methacrylate and triethylene glycol dimethacrylate as carriers of the hydrophobic fluorescent dye

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

New amphiphilic terpolymers of N-vinylpyrrolidone, poly(ethylene glycol) methyl ether methacrylate (Mn 500 g/mol) and triethylene glycol dimethacrylate (branching agent) were synthesized via radical polymerization with and without 1-decanethiol as a chain transfer agent. They consisted of ca. 10 mol% (di)methacrylate units and had effective absolute molecular weight of about 26–600 kDa. The terpolymers were studied in polar media with dynamic light scattering, and critical concentration of aggregation and sizes of individual macromolecules and their aggregates were determined. Nanostructures of terpolymers containing 0.25–0.75% of fluorescent zinc tetraphenylporphyrinate (ZnTPP) were obtained that had the hydrodynamic radii less than 100 nm in aqueous solutions. The molar extinction coefficient of the Soret band at 425 nm of the encapsulated ZnTPP and the effective terpolymer binding constant for ZnTPP and the stability of terpolymers were found to be dependent on the presence of hydrophobic –SC10H21 groups in terpolymer chains. Terpolymer 1 did not affect significantly the viability of Vero or HeLa cells and was able to penetrate cells with high efficiency. Thus, new non-toxic amphiphilic terpolymers of N-vinylpyrrolidone can be promising platforms for delivery of hydrophobic biologically active compounds.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rajesh S, James W, Lillard J (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223. https://doi.org/10.1016/j.yexmp.2008.12.004

    Article  CAS  Google Scholar 

  2. Kaparissides C, Alexandridou S, Kotti K, Chaitidou S (2006) Recent advances in novel drug delivery systems. J Nanotechnol Online. https://doi.org/10.2240/azojono0111

    Article  Google Scholar 

  3. Rao JP, Geckelera KE (2011) Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci 36:887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001

    Article  CAS  Google Scholar 

  4. Tian H, Tang Zh, el Zhuang X, al, (2012) Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280. https://doi.org/10.1016/j.progpolymsci.2011.06.004

    Article  CAS  Google Scholar 

  5. Armentano I, Dottori M, el Fortunati E, al, (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146. https://doi.org/10.1016/j.polymdegradstab.2010.06.007

    Article  CAS  Google Scholar 

  6. Vrignaud S, Benoit J-P, Saulnier P (2011) Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 32:8593–8604. https://doi.org/10.1016/j.biomaterials.2011.07.057

    Article  CAS  PubMed  Google Scholar 

  7. Mora-Huertasa CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142. https://doi.org/10.1016/j.ijpharm.2009.10.018

    Article  CAS  Google Scholar 

  8. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf, B 75:1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001

    Article  CAS  Google Scholar 

  9. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed nanotechnol Biol Med 2:8–21

    Article  CAS  Google Scholar 

  10. Lamprecht A (2009) Nanotherapeutics. Drug delivery concepts in nanoscience. Stanford Publishing, France

  11. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm and Biopharm 65:259–269. https://doi.org/10.1016/j.ejpb.2006.11.009

    Article  CAS  Google Scholar 

  12. Desale SS, Cohen SM, Yi Z et al (2013) Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer. J Controlled Release 171:339–348. https://doi.org/10.1016/j.jconrel.2013.04.026

    Article  CAS  Google Scholar 

  13. Torchilin VP (2012) Multifunctional nanocarriers. Adv Drug Deliv Rev 64:302–315. https://doi.org/10.1016/j.addr.2012.09.031

    Article  Google Scholar 

  14. Klimenko OV, Shtilman MI (2013) Transfection of Kasumi-1 cells with a new type of polymer carriers loaded with miR-155 and antago-miR-155. Cancer Gene Ther 20:237–241. https://doi.org/10.1038/cgt.2013.11

    Article  CAS  PubMed  Google Scholar 

  15. Kuskov AN, Voskresenskaya AA, Goryachaya AV et al (2010) Preparation and characterization of amphiphilic poly-N-vinylpyrrolidone nanoparticles containing indomethacin. J Mater Sci-Mater Med 21:1521–1530. https://doi.org/10.1007/s10856-010-4029-1

    Article  CAS  PubMed  Google Scholar 

  16. Yamskov IA, Kuskov AN, Babievsky KK et al (2008) Novel liposomal forms of antifungal antibiotics modified by amphiphilic polymers. Appl Biochem Microbiol 44:624–628. https://doi.org/10.1134/S0003683808060112

    Article  CAS  Google Scholar 

  17. Kuskov AN, Kulikov PP, Shtilman MI et al (2016) Amphiphilic poly-N-vynilpyrrolidone nanoparticles: Cytotoxicity and acute toxicity study. Food Chem Toxicol 96:273–279. https://doi.org/10.1016/j.fct.2016.08.017

    Article  CAS  PubMed  Google Scholar 

  18. Luss AL, Kulikov PP, el Romme SB, al, (2018) Nanosized carriers based on amphiphilic poly-N-vinyl-2-pyrrolidone for intranuclear drug delivery. Nanomedicine 13:703–715. https://doi.org/10.2217/nnm-2017-0311

    Article  CAS  PubMed  Google Scholar 

  19. Kuskov AN, Kulikov PP, Goryachaya AV et al (2018) Self-assembled amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for hydrophobic drugs: Stability aspects. J Appl Polymer Sci 135:45637. https://doi.org/10.1002/app.45637

    Article  CAS  Google Scholar 

  20. Zeng X, Zhang Y, Wu Z et al (2011) Hyperbranched copolymer micelles as delivery vehicles of doxorubicin in breast cancer cells. J Polym Sci Part A: Polym Chem 50:280–288. https://doi.org/10.1002/pola.25027

    Article  CAS  Google Scholar 

  21. Zhou Y, Yan D (2009) Supramolecular self-assembly of amphiphilic hyberbranched polymers at all scales and dimensions: Progress, characteristics and perspectives. Chem Commun 10:1172–1188. https://doi.org/10.1039/B814560C

    Article  Google Scholar 

  22. Zhou Y, Huang W, Liu J et al (2010) Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22:4567–4590. https://doi.org/10.1002/adma.201000369

    Article  CAS  PubMed  Google Scholar 

  23. Kurmaz SV, Obraztsova NA, Balakina AA, Terent’ev AA, (2016) Preparation of the amphiphilic copolymer of N-vinylpyrrolidone with triethylene glycol dimethacrylate nanoparticles and the study of their properties in vitro. Russ Chem Bull 65:2097–2102. https://doi.org/10.1007/s11172-016-1558-x

    Article  CAS  Google Scholar 

  24. Kurmaz SV, Sen’ VD, Kulikov AV, et al (2019) Polymer nanoparticles of N-vinylpyrrolidone loaded with an organic aminonitroxyl platinum (IV) complex. Characterization and investigation of their in vitro cytotoxicity. Russ Chem Bull 68:1769–1779. https://doi.org/10.1007/s11172-019-2623-z

    Article  CAS  Google Scholar 

  25. Kurmaz SV, Fadeeva NV, Fedorov BS et al (2020) New antitumor hybrid materials based on PtIV organic complex and polymer nanoparticles consisting of N-vinylpyrrolidone and (di)methacrylates. Mendeleev Commun 30:22–24. https://doi.org/10.1016/j.mencom.2020.01.007

    Article  CAS  Google Scholar 

  26. Kurmaz SV, Obraztsova NA, Perepelitsina EO et al (2014) Synthesis and characterization of C60-based composites of amphiphilic N-vinylpyrrolidone/triethylene glycol dimethacrylate copolymers. Polym Compos 35:1362–1371

    Article  CAS  Google Scholar 

  27. Kurmaz SV, Obraztsova NA (2015) New hybrid nanostructures of C60 fullerene based on an amphiphilic copolymer of N-vinylpyrrolidone and (di)methacrylates. Mendeleev Commun 25:350–352. https://doi.org/10.1016/j.mencom.2015.09.011

    Article  CAS  Google Scholar 

  28. Kurmaz SV, Obraztsova NA, Perepelitsina EO et al (2015) New hybrid macromolecular structures of C60 fullerene-amphiphilic copolymers of N-vinylpyrrolidone and triethylene glycol dimethacrylate. Materials Today Communications 4:130–140. https://doi.org/10.1016/j.mtcomm.2015.05.004

    Article  CAS  Google Scholar 

  29. Kurmaz SV, Obraztsova NA, Kabachkov EN (2016) The features of the formation of the hybrid nanostructures of C60 fullerene and amphiphilic copolymer of N-vinylpyrrolidone with (di)methacrylates in isopropyl alcohol and its mixtures with water. Colloid Polym Sci 294:2087–2097. https://doi.org/10.1007/s00396-016-3959-7

    Article  CAS  Google Scholar 

  30. Kurmaz SV, Rudneva TN, Sanina NA (2018) New nitric oxide-carrier systems on an amphiphilic copolymer of N-vinylpyrrolidone with triethylene glycol dimethacrylate. Mendeleev Commun 28:73–75. https://doi.org/10.1016/j.mencom.2018.01.024

    Article  CAS  Google Scholar 

  31. Kurmaz SV, Gak VY, Kurmaz VA, Konev DV (2018) Preparation and properties of hybrid nanostructures of zinc tetraphenylporphyrinate and an amphiphilic copolymer of N-vinylpyrrolidone in a neutral aqueous buffer solution. Russ J Phys Chem A 92:329–333. https://doi.org/10.1134/S0036024418020152

    Article  CAS  Google Scholar 

  32. Kurmaz SV, Konev DV, Sen’ VD et al (2020) Preparation and characterization of stable water soluble hybrid nanostructures of hydrophobic compounds by encapsulation into nanoparticles of amphiphilic N-vinylpyrrolidone copolymers of new generation. IOP Conf Ser Mater Sci Eng 848:012043–012053. https://doi.org/10.1088/1757-899X/848/1/012043

    Article  CAS  Google Scholar 

  33. Zanelli GD, Kaelin AC, Zanelli GD (1981) Synthetic porphyrins as tumour-localizing. Br J Radiol 54:403–407. https://doi.org/10.1259/0007-1285-54-641-403

    Article  CAS  PubMed  Google Scholar 

  34. Patronas J, Cohen JS, Knop RH et al (1986) Metalloporphyrin contrast agents for magnetic resonance imaging of human tumors in mice. Cancer Treat Rep 70:391–395

    PubMed  Google Scholar 

  35. Ethirajan M, Chen Y, Joshi P (2011) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40:340–362. https://doi.org/10.1039/B915149B

    Article  CAS  PubMed  Google Scholar 

  36. York AW, Kirkland SE, McCormick CL (2008) Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv Drug Deliver Rev 60:1018–1036. https://doi.org/10.1016/j.addr.2008.02.006

    Article  CAS  Google Scholar 

  37. Stadler V, Kirmse R, Beyer M et al (2008) PEGMA/MMA copolymer graftings: generation, protein resistance, and a hydrophobic domain. Langmuir 24:8151–8157. https://doi.org/10.1021/la800772m

    Article  CAS  PubMed  Google Scholar 

  38. Luzon M, Boyer C, Peinado C et al (2010) Water soluble, thermoresponsive, hyperbranched copolymers based on PEG methacrylates: Synthesis, characterization, and LCST behavior. J Polym Sci A: Polym Chem 48:2783–2792. https://doi.org/10.1002/pola.24027

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks G, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin R, Morokuma LK, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian 09, Revision B.01. Gaussian 09, Revis. B.01, Gaussian, Inc., Wallingford CT. 2009

  40. Kurmaz SV, Pyryaev AN (2012) Synthesis and properties of fullerene-containing N-vinylpyrrolidone copolymers. Rus J of Gen Chem 82:1705–1714. https://doi.org/10.1134/S1070363212100118

    Article  CAS  Google Scholar 

  41. Lebedeva TL, Feldstein MM, Kuptsov SA, Plate NA (2000) Structure of stable H-bonded complexes of poly-N-vinylpyrrolidone with water. Polymer Sci A 40:1504–1523

    Google Scholar 

  42. Ignat’ev VM, Emel’yanova NS, Fadeeva NV, Kurmaz SV, (2020) Quantum chemical modeling the structure of complexes of copolymer of N-vinylpyrrolidone and triethylene glycol dimethacrylate with metformin. Russ J of Phys Chem A 94:939–944. https://doi.org/10.1134/S0036024420050106

    Article  Google Scholar 

  43. Vidyasagar Ajay (2013) Stimuli responsive polymers for biophysical applications. J Phys Chem Biophys 3:e116–e118. https://doi.org/10.4172/2161-0398.1000e116

    Article  Google Scholar 

  44. Lutz J-F, Akdemir J, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J Am Chem Soc 128:13046–13047. https://doi.org/10.1021/ja065324n

    Article  CAS  PubMed  Google Scholar 

  45. Connors KA (1987) Binding constants: the measurement of molecular complex stability. John Wiley & Sons, New York

    Google Scholar 

Download references

Acknowledgements

This work was performed in accordance with the state task AAAA-A19-119041090087-4 and AAAA-A19-119071890015-6.

Author information

Authors and Affiliations

Authors

Contributions

SVK and AAT were involved in conceptualization; NVF, NSE and GVS were involved in methodology; AVK, VMI, TSS, NVF and MAL were involved in formal analysis and investigation; SVK was involved in writing—original draft preparation; NVF was involved in Writing—review and editing; and AAT was involved in supervision.

Corresponding author

Correspondence to Svetlana V. Kurmaz.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6034 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurmaz, S.V., Fadeeva, N.V., Komendant, A.V. et al. New amphiphilic terpolymers of N-vinylpyrrolidone with poly(ethylene glycol) methyl ether methacrylate and triethylene glycol dimethacrylate as carriers of the hydrophobic fluorescent dye. Polym. Bull. 79, 8905–8925 (2022). https://doi.org/10.1007/s00289-021-03936-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03936-y

Navigation