Skip to main content
Log in

Structural modification of polysulfone/NMP membranes: effect of chloroform as co-solvent

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of chloroform as co-solvent, in polysulfone/NMP/water mixtures, on the morphology of membranes fabricated by the phase inversion method is reported. This was studied by preparing four solutions of 10% w/w polysulfone in NMP with 0, 15, 30, and 45% w/w chloroform as a co-solvent. The presence of chloroform affects the membrane morphology, deterring the formation of finger-like macrovoids. On the other hand, Ruaan’s parameter (Φ), turbidity tests, and the linearized method for the binodal curve were proposed to predict the variation in the membrane morphology, which was verified by direct observation through an optical microscope. Hence, in the presence of chloroform, a reduction of 50% in the homogeneous region on the ternary diagram was perceived, suggesting delayed precipitation of the polymer. Furthermore, the increment in the apparent diffusivity value (from 6.25 × 10−6 to 5.62 × 10−4 cm2/s with 30% w/w of CHCl3) was determined from the measurement of the water penetration distance as a function of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD (2017) Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356:eaab0530. https://doi.org/10.1126/science.aab0530

    Article  CAS  PubMed  Google Scholar 

  2. Yip Y-L, McHugh AJ (2006) Modeling and simulation of nonsolvent vapor-induced phase separation. J Membrane Sci 271:163–176. https://doi.org/10.1016/j.memsci.2005.06.063

    Article  CAS  Google Scholar 

  3. Krantz WB, Greenberg AR, Hellman DJ (2010) Dry-casting: Computer simulation, sensitivity analysis, experimental and phenomenological model studies. J Membrane Sci 354:178–188

    Article  CAS  Google Scholar 

  4. Ramon GZ, Wong MCY, Hoek EMV (2012) Transport through composite membrane, part 1: Is there an optimal support membrane? J Membrane Sci 415–416:298–305

    Article  Google Scholar 

  5. Mulder M (1996) Basic Principles of Membrane Technology, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  6. Guillen GR, Pan Y, Li M, Hoek EMV (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind Eng Chem Res 50:3798–3817

    Article  CAS  Google Scholar 

  7. Chen SH, Liou RM, Lin YY, Lai CL, Lai JY (2009) Preparation and characterizations of asymmetric sulfonated polysulfone membranes by wet phase inversion method. Eur Polymer J 45:1293–1301. https://doi.org/10.1016/j.eurpolymj.2008.11.030

    Article  CAS  Google Scholar 

  8. Mark JE (2007) Physical Properties of Polymers Handbook; Mark, J. E., Ed.; 2nd Ed.; Springer New York: New York, NY ISBN 978-0-387-31235-4.

  9. Mousavi SM, Zadhoush A (2017) Investigation of the relation between viscoelastic properties of polysulfone solutions, phase inversion process and membrane morphology: The effect of solvent power. J Membrane Sci 532:47–57. https://doi.org/10.1016/j.memsci.2017.03.006

    Article  CAS  Google Scholar 

  10. Ruaan R-C, Chang T, Wang D-M (1999) Selection criteria for solvent and coagulation medium in view of macrovoid formation in the wet phase inversion process. J Polymer Sci Part B: Polymer Phys 37:1495–1502

    Article  CAS  Google Scholar 

  11. Ghasemi SM, Mohammadi N (2013) The prediction of polymeric membrane characteristics prepared via nonsolvent induced phase separation by the apparent coagulation time. Polymer 54:4675–4685

    Article  CAS  Google Scholar 

  12. Aroon MA, Ismail AF, Montazer-Rahmati MM, Matsuura T (2010) Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent. Sep Purif Technol 72:194–202

    Article  CAS  Google Scholar 

  13. Altena FW, Smolders CA (1982) Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent. Macromolecules 15:1491–1497

    Article  CAS  Google Scholar 

  14. Boom R, van den Boomgaard T, van den Berg JWA, Smolders CA (1993) Linearized cloud point curve corelation for ternary systems consisting of one polymer, one solvent and one non-solvent. Polymer 34:2348–2356

    Article  CAS  Google Scholar 

  15. Kools WFC, Van Den Boomgaard T, Strathmann H (1998) Considerations and restrictions on the theoretical validity of the linearized cloudpoint correlation. Polymer 39:4835–4840

    Article  CAS  Google Scholar 

  16. Ren J, Zhou J, Deng M (2010) Morphology transition of asymmetric polyetherimide flat sheet membranes with different thickness by wet phase-inversion process. Sep Purif Technol 74:119–129

    Article  CAS  Google Scholar 

  17. Yu L, Yang F, Xiang M (2014) Phase separation in a PSf/DMF/water system: a proposed mechanism for macrovoid formation. RSC Adv 4:42391–42402

    Article  CAS  Google Scholar 

  18. Kim HJ, Tyagi RK, Fouda AE, Jonasson K (1996) The kinetic study for asymmetric membrane formation via phase-inversion process. J Appl Polymer Sci 62:621–629

    Article  CAS  Google Scholar 

  19. Van De Witte P, Van Den Berg JWA, Feijen J, Reeve JL, McHugh AJ (1996) In situ analysis of solvent/nonsolvent exchange and phase separation processes during the membrane formation of polylactides. J Appl Polymer Sci 61(4):685–695

    Article  Google Scholar 

  20. Zheng QZ, Wang P, Yang YN, Cui DJ (2006) The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane. J Membrane Sci 286:7–11

    Article  CAS  Google Scholar 

  21. Li X, Chen C, Li J (2008) Formation kinetics of polyethersulfone with cardo membrane via phase inversion. J Membrane Sci 314:206–211

    Article  CAS  Google Scholar 

  22. Barton BF, Reeve JL, Mchugh AJ (1997) Observations on the dynamics of nonsolvent-induced phase inversion. J Polymer Sci, Part B: Polymer Phys 35:569–585

    Article  CAS  Google Scholar 

  23. Ray RJ, Krantz WB, Sani RL (1985) Linear stability theory model for finger formation in asymmetric membranes. J Membrane Sci 23:155–182

    Article  CAS  Google Scholar 

  24. Guillen GR, Ramon GZ, Kavehpour HP, Kaner RB, Hoek EMV (2013) Direct microscopic observation of membrane formation by nonsolvent induced phase separation. J Membrane Sci 431:212–220

    Article  CAS  Google Scholar 

  25. Matz R (1972) The structure of cellulose acetate membranes 1. The development of porous structures in anisotropic membranes. Desalination 10:1–15

    Article  CAS  Google Scholar 

  26. Strathmann H, Kock K, Amar P, Baker RW (1975) The formation mechanism of asymmetric membranes. Desalination 16:179–203

    Article  CAS  Google Scholar 

  27. Riyasudheen N, Sujith A (2012) Formation behavior and performance studies of poly(ethylene-co-vinyl alcohol)/poly(vinyl pyrrolidone) blend membranes prepared by non-solvent induced phase inversion method. Desalination 294:17–24

    Article  CAS  Google Scholar 

  28. Mondal S, Griffiths IM, Ramon GZ (2019) Forefronts in structure–performance models of separation membranes. J Membrane Sci 588:117166

    Article  CAS  Google Scholar 

  29. Jansen JC, Macchione M, Drioli E (2005) High flux asymmetric gas separation membranes of modified poly(ether ether ketone) prepared by the dry phase inversion technique. J Membrane Sci 255:167–180

    Article  CAS  Google Scholar 

  30. Chen SH, Liou RM, Lai JY, Lai CL (2007) Effect of the polarity of additional solvent on membrane formation in polysulfone/N-methyl-2-pyrrolidone/water ternary system. Eur Polymer J 43:3997–4007

    Article  CAS  Google Scholar 

  31. Kools WFC (1998) Membrane formation by phase inversion in multicomponent polymer systems mechanisms and morphologies. Universiteit Twente, Enschede

    Google Scholar 

  32. Brandrup J, Immergut EH, Grulke EA, Eds. Polymer Handbook 4th Ed.; ISBN 0471166286.

Download references

Acknowledgements

This work is part of Luis Eduardo Maldonado López doctoral thesis with the CONACYT scholarship #588854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Escobar-Barrios.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldonado-Lopez, L.E., Fimbres-Weihs, G.A. & Escobar-Barrios, V.A. Structural modification of polysulfone/NMP membranes: effect of chloroform as co-solvent. Polym. Bull. 79, 6601–6615 (2022). https://doi.org/10.1007/s00289-021-03828-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03828-1

Keywords

Navigation