Skip to main content
Log in

Fabrication of a dye removal system through electrospun of TiO2/Nylon-6 nanocomposite on three-dimensional spacer fabrics

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, modification of three-dimensional (3D) polyethylene therphtalate fabric with nylon 6/titania nanofibers (SNT) was discussed for application in dye removal process. Different concentrations of TiO2 (0, 0.5, 1 and 1.5 wt.%) were incorporated in nylon polymeric solution for production electrospun nanofibers on the back and forth surface of spacer fabric. These substrates were applied as photo catalyst for removal of methylene blue dye. For prepared membrane, pH = 11, TiO2 concentration = 1.5%, dye concentration = 10 mg/L and time = 120 min were determined as optimum condition and dye removal percentage was about 90%. Then, the membrane with optimum TiO2 was modified with chitosan (CSNT) and its capability in discoloration of acid blue dye was assessed. The prepared different compositions were characterized by field emission scanning electron microscopy (FESEM) and fourier transform infrared (FTIR) spectroscopy to investigate the surface morphology, cross section of fabricated structures and functional groups on the surface of nanofibers. The results exhibited that SNT and CSNT structures could be applied as an excellent substrate in eliminating of methylene blue at pH = 11 and acid blue dye at pH = 3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

None.

Code availability

None.

References

  1. Ahmad A, Sumathi S, Hameed B (2006) Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chem Eng J 118:99–105

    Article  CAS  Google Scholar 

  2. Al-Ahmed ZA, Hassan AA, El-Khouly SM, El-Shafey SE (2019) TEMPO-oxidized cellulose nanofibers/TiO 2 nanocomposite as new adsorbent for Brilliant Blue dye removal. Polym Bull, 1-14

  3. Arumugam V, Mishra R, Militky J, Salacova J (2017) Investigation on thermo-physiological and compression characteristics of weft-knitted 3D spacer fabrics. J Textile Inst 108:1095–1105

    CAS  Google Scholar 

  4. Arumugam V, Mishra R, Militky J, Tunak M (2016) In-plane shear behavior of 3D spacer knitted fabrics. J Ind Text 46:868–886

    Article  CAS  Google Scholar 

  5. Barka N, Qourzal S, Assabbane A, Nounah A, Ait-Ichou Y (2010) Photocatalytic degradation of an azo reactive dye, Reactive Yellow 84, in water using an industrial titanium dioxide coated media. Arab J Chem 3:279–283

    Article  CAS  Google Scholar 

  6. Bianco Prevot A et al (2001) Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. Environ Sci Technol 35:971–976

    Article  CAS  Google Scholar 

  7. Boributh S, Chanachai A, Jiraratananon R (2009) Modification of PVDF membrane by chitosan solution for reducing protein fouling. J Membr Sci 342:97–104

    Article  CAS  Google Scholar 

  8. Cheung W, Szeto Y, McKay G (2009) Enhancing the adsorption capacities of acid dyes by chitosan nano particles. Biores Technol 100:1143–1148

    Article  CAS  Google Scholar 

  9. Das C, Gebru KA (2017) Cellulose acetate modified titanium dioxide (TiO2) nanoparticles electrospun composite membranes: fabrication and characterization. J Inst Eng (India) Ser E 98:91–101

    Article  Google Scholar 

  10. Deng H, Lu J, Li G, Zhang G, Wang X (2011) Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem Eng J 172:326–334

    Article  CAS  Google Scholar 

  11. Deng, X., Ren, X., Jiao, Y., Tian, H., Zhang, P., Zhong, H., & Liu, Y. (2010). Preparation of poly (methyl acrylate)/tio2 composites by potassium diperiodatocuprateinitiated grafting copolymerization.

  12. Dhanya A, Aparna K (2016) Synthesis and evaluation of TiO2/chitosan based hydrogel for the adsorptional photocatalytic degradation of azo and anthraquinone dye under UV light irradiation. Procedia Technol 24:611–618

    Article  Google Scholar 

  13. Fagiolari L, Bonomo M, Cognetti A, Meligrana G, Gerbaldi C, Barolo C, Bella F (2020) Photoanodes for aqueous solar cells: exploring additives and formulations starting from a commercial TiO2 past

  14. Ghoreishian SM, Badii K, Norouzi M, Rashidi A, Montazer M, Sadeghi M, Vafaee M (2014) Decolorization and mineralization of an azo reactive dye using loaded nano-photocatalysts on spacer fabric: Kinetic study and operational factors. J Taiwan Inst Chem Eng 45:2436–2446

    Article  CAS  Google Scholar 

  15. Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586

    Article  CAS  Google Scholar 

  16. Jinendra U, Bilehal D, Nagabhushana B, Reddy KR, Reddy CV, Raghu AV (2019) Template-free hydrothermal synthesis of hexa ferrite nanoparticles and its adsorption capability for different organic dyes: Comparative adsorption studies, isotherms and kinetic studies. Mater Sci Energy Technol 2:657–666

    Google Scholar 

  17. Jinendra U, Kumar J, Nagabhushana B, Raghu AV, Bilehal D (2019) Facile synthesis of CoFe2O4 nanoparticles and application in removal of malachite green dye. Green Mater 7:137–142

    Article  Google Scholar 

  18. Kang S-J, Tijing LD, Hwang B-s, Jiang Z, Kim HY, Kim CS (2013) Fabrication and photocatalytic activity of electrospun nylon-6 nanofibers containing tourmaline and titanium dioxide nanoparticles. Ceram Int 39:7143–7148

    Article  CAS  Google Scholar 

  19. Kaur M, Verma N (2014) CaCO3/TiO2 nanoparticles based dye sensitized solar cell. J Mater Sci Technol 30:328–334

    Article  CAS  Google Scholar 

  20. Kim T-K, Son Y-A, Lim Y-J (2005) Thermodynamic parameters of disperse dyeing on several polyester fibers having different molecular structures. Dyes Pigm 67:229–234

    Article  CAS  Google Scholar 

  21. Konstantinou I, Albanis T (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248

    Article  CAS  PubMed  Google Scholar 

  22. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol 8:2533–2541

    Article  CAS  Google Scholar 

  23. Lee K-H, Kim K-W, Pesapane A, Kim H-Y, Rabolt JF (2008) Polarized FT-IR study of macroscopically oriented electrospun nylon-6 nanofibers. Macromolecules 41:1494–1498

    Article  CAS  Google Scholar 

  24. Li F, Dong Y, Kang W, Cheng B, Cui G (2017) Enhanced removal of azo dye using modified PAN nanofibrous membrane Fe complexes with adsorption/visible-driven photocatalysis bifunctional roles. Appl Surf Sci 404:206–215

    Article  CAS  Google Scholar 

  25. Massaro A, Muñoz-García AB, Maddalena P, Bella F, Meligrana G, Gerbaldi C, Pavone M (2020) First-principles study of na insertion at TiO 2 anatase surfaces: new hints for na-ion battery design. Nanoscale Adv 2:2745–2751

    Article  CAS  Google Scholar 

  26. Montazer M, Jolaei M. Modification of spacer polyester fabric with cyclodextrin and citric acid

  27. Ni M, Leung MK, Leung DY, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425

    Article  CAS  Google Scholar 

  28. Pant HR, Bajgai MP, Nam KT, Seo YA, Pandeya DR, Hong ST, Kim HY (2011) Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: a multifunctional nanocomposite textile material. J Hazard Mater 185:124–130

    Article  CAS  PubMed  Google Scholar 

  29. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80

    Article  CAS  PubMed  Google Scholar 

  30. Rahimdokht M, Pajootan E, Ranjbar-Mohammadi M (2019) Titania/gum tragacanth nanohydrogel for methylene blue dye removal from textile wastewater using response surface methodology. Polym Int 68:134–140

    Article  CAS  Google Scholar 

  31. Ranjbar-Mohammadi M, Rahimdokht M, Pajootan E (2019) Low cost hydrogels based on gum Tragacanth and TiO2 nanoparticles: characterization and RBFNN modelling of methylene blue dye removal. Int J Biol Macromol 134:967–975

    Article  CAS  PubMed  Google Scholar 

  32. Ranjbar-Mohammadi M, Hajir Bahrami S, Arami M (2013) Eco-friendly grafting of natural biopolymer chitosan onto acylated wool fabrics using ultrasonic and study its properties. J Appl Polym Sci 129:707–713

    Article  CAS  Google Scholar 

  33. Rauf M, Meetani M, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276:13–27

    Article  CAS  Google Scholar 

  34. Reddy CV et al (2020) Copper-doped ZrO2 nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J Environ Manage 260:110088

    Article  CAS  PubMed  Google Scholar 

  35. Semiz L (2020) Removal of reactive black 5 from wastewater by membrane filtration. Polym Bull 77:3047–3059

    Article  CAS  Google Scholar 

  36. Shalumon K, Anulekha K, Chennazhi KP, Tamura H, Nair S, Jayakumar R (2011) Fabrication of chitosan/poly (caprolactone) nanofibrous scaffold for bone and skin tissue engineering. Int J Biol Macromol 48:571–576

    Article  CAS  PubMed  Google Scholar 

  37. Shirzad-Siboni M, Jafari SJ, Giahi O, Kim I, Lee S-M, Yang J-K (2014) Removal of acid blue 113 and reactive black 5 dye from aqueous solutions by activated red mud. J Ind Eng Chem 20:1432–1437

    Article  CAS  Google Scholar 

  38. Srinivas M, Venkata RC, Kakarla RR, Shetti NP, Reddy M, Anjanapura VR (2019) Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Mater Res Exp 6:125502

    Article  CAS  Google Scholar 

  39. Vaiano V, Sacco O, Sannino D, Ciambelli P (2015) Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation. Appl Catal B 170:153–161

    Article  CAS  Google Scholar 

  40. Wang C-C, Lee C-K, Lyu M-D, Juang L-C (2008) Photocatalytic degradation of CI Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters. Dyes Pigm 76:817–824

    Article  CAS  Google Scholar 

  41. Wang X, Hsiao BS (2016) Electrospun nanofiber membranes. Current opinion in chemical engineering 12:62–81

    Article  Google Scholar 

  42. Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1:16018

    Article  CAS  Google Scholar 

  43. Xu C, Rangaiah G, Zhao X (2014) Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study. Ind Eng Chem Res 53:14641–14649

    Article  CAS  Google Scholar 

  44. Yang S-T, Chen S, Chang Y, Cao A, Liu Y, Wang H (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359:24–29

    Article  CAS  PubMed  Google Scholar 

  45. Yu Y, Wang J, Parr JF (2012) Preparation and properties of TiO2/fumed silica composite photocatalytic materials. Procedia Eng 27:448–456

    Article  CAS  Google Scholar 

  46. Zainal Z, Hui LK, Hussein MZ, Abdullah AH (2009) Characterization of TiO2–chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process. J Hazard Mater 164:138–145

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H-T, Han J, Xue Y, Nie H-L, Zhu L-M, Branford-White C Surface modification of electrospun nylon nanofiber based dye affinity membrane and its application to papain adsorption. In: 2009 3rd international conference on bioinformatics and biomedical engineering, 2009. IEEE, pp 1-4

  48. Zonoozi MH, Alavi Moghaddam MR, Arami M (2011) Study on the removal of acid dyes using chitosan as a natural coagulant/coagulant aid. Water Sci Technol 63:403–409. https://doi.org/10.2166/wst.2011.234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Iran National Science Foundation (INSF) with Grant Number of 94003500 supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marziyeh Ranjbar-Mohammadi.

Ethics declarations

Conflicts of interest

The authors state that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar-Mohammadi, M., Yousefi, E. Fabrication of a dye removal system through electrospun of TiO2/Nylon-6 nanocomposite on three-dimensional spacer fabrics. Polym. Bull. 79, 2953–2967 (2022). https://doi.org/10.1007/s00289-021-03645-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03645-6

Keywords

Navigation