Skip to main content

Advertisement

Log in

Natural gum as bio-reductant to green synthesize silver nanoparticles: assessing the apoptotic efficacy on MCF-7 and SH-SY5Y cell lines and their antimicrobial potential

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present study, silver nanoparticles (AgNPs) were synthesized using Prunus avium gum extract and their physicochemical properties together with antibacterial and cytotoxic effects were evaluated. The characterization of these AgNPs was performed by UV–vis spectroscopy, transmission electron microscopy, scanning electron microscopy, and Fourier transforms infrared spectroscopy. The bio-performance of the nanoparticles was also evaluated. Our results exhibit the prominent antibacterial activity of AgNPs against both Gram-positive and Gram-negative bacteria. The MTT results indicate cytotoxicity of AgNPs on MCF-7 and SH-SY5Y cell lines at 50 and 10 µg mL−1 concentrations, respectively. Moreover, gene expression analysis by real-time PCR represents the upregulation of Bax mRNA and downregulation of Bcl-2 mRNA, demonstrates the induction of apoptosis after AgNPs treatment. These findings imply that green-synthesized AgNPs could be a promising candidate in biomedical applications such as battling cancer and infectious diseases.

Graphic abstract

The scheme of preparation of AgNPs and its effect on cell and bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nadimi AE, Ebrahimipour SY, Afshar EG, Falahati-Pour SK, Ahmadi Z, Mohammadinejad R, Mohamadi M (2018) Nano-scale drug delivery systems for antiarrhythmic agents. Eur J Med Chem 157:1153–1163

    Article  CAS  PubMed  Google Scholar 

  2. Mohammadinejad R, Dadashzadeh A, Moghassemi S, Ashrafizadeh M, Dehshahri A, Pardakhty A, Sassan H, Sohrevardi S-M, Mandegary A (2019) Shedding light on gene therapy: carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs-A review. J Adv Res 18:81–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pandey S, Do JY, Kim J, Kang M (2020) Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr Polym 230:115597

    Article  CAS  PubMed  Google Scholar 

  4. Ahmadi Z, Mohammadinejad R, Ashrafizadeh M (2019) Drug delivery systems for resveratrol, a non-flavonoid polyphenol: emerging evidence in last decades. J Drug Deliv Sci Technol 51:591–604

    Article  CAS  Google Scholar 

  5. Khatami M, Zafarnia N, Bami MH, Sharifi I, Singh H (2018) Antifungal and antibacterial activity of densely dispersed silver nanospheres with homogeneity size which synthesized using chicory: an in vitro study. Journal de mycologie medicale 28:637–644

    Article  CAS  PubMed  Google Scholar 

  6. Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG (2018) Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustain Chem Pharm 10:9–15

    Article  Google Scholar 

  7. Pandey S, Goswami GK, Nanda KK (2018) Green synthesis of biopolymer–silver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int J Biol Macromol 51:583–589

    Article  CAS  Google Scholar 

  8. Pandey S, Ramontja J (2016) Sodium alginate stabilized silver nanoparticles–silica nanohybrid and their antibacterial characteristics. Int J Biol Macromol 93:712–723

    Article  CAS  PubMed  Google Scholar 

  9. AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  PubMed  Google Scholar 

  10. Ordzhonikidze C, Ramaiyya L, Egorova E, Rubanovich A (2009) Genotoxic effects of silver nanoparticles on mice in vivo. Acta Naturae 1:99–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim JS, Sung JH, Ji JH, Song KS, Lee JH, Kang CS, Yu IJ (2011) In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure. Saf Health Work 2:34–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25:1097–1105

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Liu S, Ma J, Qu G, Wang X, Yu S, He J, Liu J, Xia T, Jiang G-B (2013) Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells. ACS Nano 7:4171–4186

    Article  CAS  PubMed  Google Scholar 

  14. Bagwe RP, Khilar KC (1997) Effects of the intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT. Langmuir 13:6432–6438

    Article  CAS  Google Scholar 

  15. Husein MM, Rodil E, Vera JH (2005) A novel method for the preparation of silver chloride nanoparticles starting from their solid powder using microemulsions. J Colloid Interface Sci 288:457–467

    Article  CAS  PubMed  Google Scholar 

  16. Bai J, Li Y, Li M, Wang S, Zhang C, Yang Q (2008) Electrospinning method for the preparation of silver chloride nanoparticles in PVP nanofiber. Appl Surf Sci 254:4520–4523

    Article  CAS  Google Scholar 

  17. Wu ZG, Munoz M, Montero O (2010) The synthesis of nickel nanoparticles by hydrazine reduction. Adv Powder Technol 21:165–168

    Article  CAS  Google Scholar 

  18. Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY (2011) Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules 16:7237–7248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vimala K, Mohan YM, Sivudu KS, Varaprasad K, Ravindra S, Reddy NN, Padma Y, Sreedhar B, MohanaRaju K (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf B 76:248–258

    Article  CAS  Google Scholar 

  20. Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DÖ, Hosseini A, Rahmati M, Dini L, Hussain S, Mandegary A, Klionsky DJ (2019) Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 15:4–33

    Article  CAS  PubMed  Google Scholar 

  21. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Coll Interface Sci 156:1–13

    Article  CAS  Google Scholar 

  22. Schneidewind H, Schüler T, Strelau KK, Weber K, Cialla D, Diegel M, Mattheis R, Berger A, Möller R, Popp J, Beilstein (2012) The morphology of silver nanoparticles prepared by enzyme-induced reduction. J Nanotechnol 3:404–414

    Google Scholar 

  23. Hossain MA, AL-Raqmi KAS, AL-Mijizy ZH, Weli AM, Al-Riyami Q (2013) Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac J Trop Biomed 3:705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohammadinejad R, Shavandi A, Raie DS, Sangeetha J, Soleimani M, Hajibehzad SS, Thangadurai D, Hospet R, Popoola JO, Arzani A (2018) Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem 21:1845–1865

    Article  Google Scholar 

  25. Lim YY, Murtijaya J (2007) Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. Food Sci Technol 40:1664–1669

    CAS  Google Scholar 

  26. Sathishkumar M, Sneha K, Won S, Cho C-W, Kim S, Yun Y-S (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B 73:332–338

    Article  CAS  Google Scholar 

  27. Safaepour M, Shahverdi AR, Shahverdi HR, Khorramizadeh MR, Gohari AR (2018) Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-wehi 164. Avicenna J Med Biotechnol 1:111

    Google Scholar 

  28. Boothby D (1983) Gummosis of stone-fruit trees and their fruits. J Sci Food Agric 34:1–7

    Article  CAS  Google Scholar 

  29. Himejima M, Kubo I (1991) Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J Agric Food Chem 39:418–421

    Article  CAS  Google Scholar 

  30. Gurav SS, Gulkari VD, Duragkar NJ, Patil AT (2008) Antimicrobial activity of Butea monosperma Lam. gum. Iran J Pharmacol Ther 7:21–24

    CAS  Google Scholar 

  31. Kora AJ, Beedu SR, Jayaraman A (2012) Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org Med Chem Lett 2:1–10

    Article  CAS  Google Scholar 

  32. Azizi S, Mohamad R, Rahim RA, Mohammadinejad R, Ariff AB (2017) Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Int J Biol Macromol 104:423–431

    Article  CAS  PubMed  Google Scholar 

  33. Nakkala JR, Mata R, Sadras SR (2017) Green synthesized nano silver: synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity. J Colloid Interface Sci 499:33–45

    Article  CAS  PubMed  Google Scholar 

  34. He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y, Li D, Huang H, Zhang K, Zheng X (2016) Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. peel extract. Nanoscale Res Lett 11:300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Shabani H, Askari G, Jahanbin K, Khodaeian F (2016) Evaluation of physicochemical characteristics and antioxidant property of Prunus avium gum exudates. Int J Biol Macromol 93:436–441

    Article  CAS  PubMed  Google Scholar 

  36. Jakobek L, Šeruga M, Novak I, Medvidović-Kosanović M (2007) Flavonols, phenolic acids and antioxidant activity of some red fruits. Dtsch Lebensm-Rundsch 103:369

    CAS  Google Scholar 

  37. Jakobek L, Šeruga M, Šeruga B, Novak I, Medvidović-Kosanović M (2009) Phenolic compound composition and antioxidant activity of fruits of Rubus and Prunus species from Croatia. Int J Food Sci Technol 44:860–868

    Article  CAS  Google Scholar 

  38. Seeram NP, Momin RA, Nair MG, Bourquin LD (2001) Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8:362–369

    Article  CAS  PubMed  Google Scholar 

  39. Ahn S-M, Ryu H-Y, Kang D-K, Jung I-C, Sohn H-Y (2009) Antimicrobial and antioxidant activity of the fruit of Prunus avium L. Microbiol Biotechnol Lett 37:371–376

    CAS  Google Scholar 

  40. Serra AT, Seabra IJ, Braga ME, Bronze M, de Sousa HC, Duarte CM (2010) Processing cherries (Prunus avium) using supercritical fluid technology. Part 1: recovery of extract fractions rich in bioactive compounds. J Supercrit Fluids 55:184–191

    Article  CAS  Google Scholar 

  41. Indana MK, Gangapuram BR, Dadigala R, Bandi R, Guttena V (2016) A novel green synthesis and characterization of silver nanoparticles using gum tragacanth and evaluation of their potential catalytic reduction activities with methylene blue and Congo red dyes. J Anal Sci Technol 7:19

    Article  CAS  Google Scholar 

  42. Moosa AA, Ridha AM, Allawi MH (2015) Green synthesis of silver nanoparticles using spent tea leaves extract with atomic force microscopy. Int J Curr Eng Technol 5:3233–3241

    Google Scholar 

  43. George BPA, Kumar N, Abrahamse H, Ray SS (2018) Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Sci Rep 8:1–14

    Google Scholar 

  44. Madhusudhan A, Reddy GB, Krishana IM (2019) Green synthesis of gold nanoparticles by using natural gums. Nanomater Plant Potential 1:111–134

    Article  Google Scholar 

  45. Chen J, Li L, Zhou X, Sun P, Li B, Zhang X (2018) Preliminary characterization and antioxidant and hypoglycemic activities in vivo of polysaccharides from Huidouba. Food Funct 9:6337–6348

    Article  CAS  PubMed  Google Scholar 

  46. Tyagi P, Tyagi R (2011) Synthesis of bisphosphodiester surfactants derived from tetradecanol and different methylene chains as a spacer derived from α-ω-alkyl dibromides. Tenside, Surfactants, Deterg 48:293–300

    Article  CAS  Google Scholar 

  47. Shivashankar M, Mandal BK (2013) Design and evaluation of chitosan-based novel pH sensitive drug carrier for sustained release of cefixime. Trop J Pharm Res 12:155–161

    Google Scholar 

  48. Shahab S, Filippovich L, Kumar R, Darroudi M, Borzehandani MY, Gomar M, Hajikolaee FH (2015) Photochromic properties of the molecule Azure A chloride in polyvinyl alcohol matrix. J Mol Struct 1101:109–115

    Article  CAS  Google Scholar 

  49. Whitehead R, Handy N (1975) Variational calculation of vibration-rotation energy levels for triatomic molecules. J Mol Spectrosc 55:356–373

    Article  CAS  Google Scholar 

  50. Martín-Lara M, Blázquez G, Ronda A, Pérez A, Calero M (2013) Development and characterization of biosorbents to remove heavy metals from aqueous solutions by chemical treatment of olive stone. Ind Eng Chem Res 52:10809–10819

    Article  CAS  Google Scholar 

  51. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  CAS  PubMed  Google Scholar 

  52. Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari M (2018) Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomed 13:8013

    Article  CAS  Google Scholar 

  53. Barbinta-Patrascu M, Badea N, Pirvu C, Bacalum M, Ungureanu C, Nadejde P, Ion C, Rau I (2016) Multifunctional soft hybrid bio-platforms based on nano-silver and natural compounds. Mater Sci Eng, C 69:922–932

    Article  CAS  Google Scholar 

  54. Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518

    Article  CAS  PubMed  Google Scholar 

  55. Velusamy P, Das J, Pachaiappan R, Vaseeharan B, Pandian K (2015) Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind Crops Prod 66:103–109

    Article  CAS  Google Scholar 

  56. Narayanaswamy K, Rajalakshmi A, Jayachitra A (2015) Green Synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J Nanosci 1:1–8

    Google Scholar 

  57. Rao NH, Lakshmidevi N, Pammi S, Kollu P, Ganapaty S, Lakshmi P (2016) Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater Sci Eng, C 62:553–557

    Article  CAS  Google Scholar 

  58. Ramesh P, Kokila T, Geetha D (2015) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta Part A Mol Biomol Spectrosc 142:339–343

    Article  CAS  Google Scholar 

  59. Patil SV, Borase HP, Patil CD, Salunke BK (2012) Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Appl Biochem Biotechnol 167:776–790

    Article  CAS  PubMed  Google Scholar 

  60. Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag + in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  PubMed  Google Scholar 

  62. Holt KB, Bard AJ (2005) Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44:13214–13223

    Article  CAS  PubMed  Google Scholar 

  63. Diamond DM, Campbell AM, Park CR, Halonen J, Zoladz PR (2007) The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast 2007:1–33

    Article  Google Scholar 

  64. Radzig M, Nadtochenko V, Koksharova O, Kiwi J, Lipasova V, Khmel I (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B 102:300–306

    Article  CAS  Google Scholar 

  65. Seth D, Choudhury SR, Pradhan S, Gupta S, Palit D, Das S, Debnath N, Goswami A (2011) Nature-inspired novel drug design paradigm using nanosilver: efficacy on multi-drug-resistant clinical isolates of tuberculosis. Curr Microbiol 62:715–726

    Article  CAS  PubMed  Google Scholar 

  66. Dehghanizade S, Arasteh J, Mirzaie A (2018) Green synthesis of silver nanoparticles using Anthemis atropatana extract: characterization and in vitro biological activities. Artif Cells Nanomed Biotechnol 46:160–168

    Article  CAS  PubMed  Google Scholar 

  67. He Y, Du Z, Ma S, Liu Y, Li D, Huang H, Jiang S, Cheng S, Wu W, Zhang K (2016) Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int J Nanomed 11:1879

    Article  CAS  Google Scholar 

  68. Jin H-O, Seo S-K, Woo S-H, Lee H-C, Kim E-S, Yoo D-H, Lee S-J, An S, Choe T-B, Kim J-I (2018) A combination of sulindac and arsenic trioxide synergistically induces apoptosis in human lung cancer H1299 cells via c-Jun NH2-terminal kinase-dependent Bcl-xL phosphorylation. Lung Cancer 61:317–327

    Article  Google Scholar 

  69. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R (2015) Silver nanoparticles biosynthesized using Achillea biebersteinii flower extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules 20:2693–2706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support for this investigation by the Research Council of Baqiyatallah University of Medical Sciences (Tehran, Iran) and Shahid Bahonar University (Kerman, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramezan Ali Taheri.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemabadi, M., Sasan, H., Amandadi, M. et al. Natural gum as bio-reductant to green synthesize silver nanoparticles: assessing the apoptotic efficacy on MCF-7 and SH-SY5Y cell lines and their antimicrobial potential. Polym. Bull. 78, 2867–2886 (2021). https://doi.org/10.1007/s00289-020-03238-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03238-9

Keywords

Navigation