Skip to main content

Advertisement

Log in

Impact and thermal analysis of heat-treated and untreated mangrove wood/high-density polyethylene composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Mangrove wood particle (MP) of size range 500–1000 microns was thermally modified under inert condition to avoid oxidation at 120 °C. The untreated and treated mangrove were compounded with high-density polyethylene (HDPE) at 10 wt%, 20 wt% and 30 wt% in an extruder with twin screw and injection-moulded into rectangular bar shapes for impact tests; fractured surfaces of impact specimens were examined. Also, the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were evaluated. The results of the impact tests showed that increase in fibre loadings gave rise to an increase in peak load and critical stress intensity factor while energy to failure and critical strain energy release rate decreased which signifies improvements in the toughness of the composites. Scanning electron microscopy images revealed that there is stronger adhesion between the HDPE matrix of treated MP than their untreated counterparts. A decrease in the degree of crystallinity (Xc) was noted in the DSC of all composites with treated composites showing higher values of Xc. TGA showed a slight increment in the degradation peak temperature (Tp) of treated MP and MP/HDPE composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pickering KL, Efendy MA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112

    Article  CAS  Google Scholar 

  2. Dányádi L, Janecska T, Szabó Z, Nagy G, Móczó J, Pukánszky B (2007) Wood flour filled PP composites: compatibilization and adhesion. Compos Sci Technol 67(13):2838–2846

    Article  Google Scholar 

  3. Ermeydan MA, Cabane E, Gierlinger N, Koetz J, Burgert I (2014) Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls. RSC Adv 4(25):12981–12988

    Article  CAS  Google Scholar 

  4. Kaboorani A, Faezipour M, Ebrahimi G (2008) Feasibility of using heat treated wood in wood/thermoplastic composites. J Reinf Plast Compos 27(16–17):1689–1699

    Article  CAS  Google Scholar 

  5. Zabihzadeh SM, Dastoorian F, Ebrahimi G (2010) Effect of wood species and coupling agent on mechanical properties of wood flour/HDPE composites. J Reinf Plast Compos 29(8):1146–1152

    Article  CAS  Google Scholar 

  6. Kaboorani A, Faezipour M (2009) Effects of wood preheat treatment on thermal stability of HDPE composites. J Reinf Plast Compos 28(24):2945–2955

    Article  CAS  Google Scholar 

  7. Adebayo GO, Hassan A, Yahya R, Rahman NA, Lafia-Araga R (2019) Influence of wood surface chemistry on the tensile and flexural properties of heat-treated mangrove/high-density polyethylene composites. Polym Bull. https://doi.org/10.1007/s00289-019-02731-0

    Article  Google Scholar 

  8. Korkut S, Akgül M, Dündar T (2008) The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresour Technol 99(6):1861–1868

    Article  CAS  Google Scholar 

  9. Rahman K-S, Islam MN, Ratul SB, Dana NH, Musa SM, Hannan MO (2018) Properties of flat-pressed wood plastic composites as a function of particle size and mixing ratio. J Wood Sci 64(3):279–286

    Article  Google Scholar 

  10. Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P (2011) Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. Polym Degrad Stab 96(5):818–822

    Article  CAS  Google Scholar 

  11. Adebayo GO, Hassan A, Yahya R, Sarih NM, Odesanya KO (2019) Impact of water saturation on the tensile and thermal properties of heat-treated mangrove/high-density polyethylene composites. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719847238

    Article  Google Scholar 

  12. Elanchezhian C, Ramnath BV, Ramakrishnan G, Rajendrakumar M, Naveenkumar V, Saravanakumar M (2018) Review on mechanical properties of natural fiber composites. Mater Today Proc 5(1):1785–1790

    Article  CAS  Google Scholar 

  13. Safri SNA, Sultan MTH, Jawaid M, Jayakrishna K (2017) Impact behaviour of hybrid composites for structural applications: a review. Compos B Eng 133:112–121

    Article  Google Scholar 

  14. Pérez E, Famá L, Pardo S, Abad M, Bernal C (2012) Tensile and fracture behaviour of PP/wood flour composites. Compos B Eng 43(7):2795–2800

    Article  Google Scholar 

  15. Siddika S, Mansura F, Hasan M, Hassan A (2014) Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fibers Polym 15(5):1023–1028

    Article  CAS  Google Scholar 

  16. Kaboorani A (2009) Thermal properties of composites made of heat-treated wood and polypropylene. J Compos Mater 43(22):2599–2607

    Article  CAS  Google Scholar 

  17. Bledzki A, Franciszczak P, Osman Z, Elbadawi M (2015) Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Ind Crops Prod 70:91–99

    Article  CAS  Google Scholar 

  18. Threepopnatkul P, Kulsetthanchalee C, Bunmee K, Kliaklom N, Roddouyboon W (2009) Improvement properties of recycled polypropylene by reinforcement of coir fiber. Adv Mat Res 79:2027–2030

    Google Scholar 

  19. Srinivasan V, Boopathy SR, Sangeetha D, Ramnath BV (2014) Evaluation of mechanical and thermal properties of banana–flax based natural fibre composite. Mater Des 60:620–627

    Article  CAS  Google Scholar 

  20. Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016) Biocomposites based on Argan nut shell and a polymer matrix: effect of filler content and coupling agent. Carbohydr Polym 143:70–83

    Article  CAS  Google Scholar 

  21. Sudha S, Thilagavathi G (2016) Effect of alkali treatment on mechanical properties of woven jute composites. J Text Inst 107(6):691–701

    Article  CAS  Google Scholar 

  22. ASTM E23–16b (2016) Standard test methods for notched bar impact testing of metallic materials. ASTM International, West Conshohocken

    Google Scholar 

  23. Lafia-Araga RA (2012) Preparation and characterisation of heat treated and untreated red balau/LDPE composites. Conventional. University of Malaya, Malaysia

  24. Rahman NA, Hassan A, Yahya R, Lafia-Araga R (2013) Impact properties of glass-fiber/polypropylene composites: the influence of fiber loading, specimen geometry and test temperature. Fibers Polym 14(11):1877–1885

    Article  CAS  Google Scholar 

  25. Hassan A, Hassan AA, Mohd Rafiq M (2011) Impact properties of injection molded glass fiber/polyamide-6 composites: effect of testing parameters. J Reinf Plast Compos 30(10):889–898

    Article  CAS  Google Scholar 

  26. Orue A, Jauregi A, Unsuain U, Labidi J, Eceiza A, Arbelaiz A (2016) The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly (lactic acid)/sisal fiber composites. Compos A Appl Sci Manuf 84:186–195

    Article  CAS  Google Scholar 

  27. Faiz S, Anis A, Luqman M, Al Zahrani SM (2016) Studies on thermal, mechanical, morphological, and viscoelastic properties of polybenzimidazole fiber reinforced high density polyethylene composites. Polym Compos 37(1):5–13

    Article  CAS  Google Scholar 

  28. Bouafif H, Koubaa A, Perré P, Cloutier A (2009) Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Compos A Appl Sci Manuf 40(12):1975–1981

    Article  Google Scholar 

  29. Lafia-Araga RA, Hassan A, Yahya R, Rahman NA, Hornsby PR, Heidarian J (2012) Thermal and mechanical properties of treated and untreated Red Balau (Shorea dipterocarpaceae)/LDPE composites. J Reinf Plast Compos 31(4):215–224

    Article  CAS  Google Scholar 

  30. Bazyar B, Samariha A (2017) Thermal, flammability, and morphological properties of nano-composite from fir wood flour and polypropylene. BioResources 12(3):6665–6678

    Article  CAS  Google Scholar 

  31. Gallina G, Cabeza Á, Biasi P, García-Serna J (2016) Optimal conditions for hemicelluloses extraction from Eucalyptus globulus wood: hydrothermal treatment in a semi-continuous reactor. Fuel Process Technol 148:350–360

    Article  CAS  Google Scholar 

  32. Jeencham R, Suppakarn N, Jarukumjorn K (2014) Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Compos B Eng 56:249–253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by University of Malaya, Kuala Lumpur, Malaysia, through research Grant Number PG137-2016A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganiyat Olusola Adebayo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adebayo, G.O., Hassan, A., Yahya, R. et al. Impact and thermal analysis of heat-treated and untreated mangrove wood/high-density polyethylene composites. Polym. Bull. 77, 3813–3829 (2020). https://doi.org/10.1007/s00289-019-02943-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02943-4

Keywords

Navigation