Skip to main content

Advertisement

Log in

Novel solid polymer electrolyte based on PMMA:CH3COOLi effect of salt concentration on optical and conductivity studies

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Novel solid polymer electrolyte (SPE) films based on poly(methyl methacrylate) (PMMA) and lithium acetate (CH3COOLi) with different weight ratios of PMMA:CH3COOLi wt% (60:40, 70:30, 80:20 wt%) were prepared by solution casting technique. XRD analysis confirmed the amorphous nature of Li–PMMA SPE films. FTIR analysis revealed the structural changes in polymer by complexation with Li salt. From the optical absorbance studies, the value of lowest energy band gap was found to be 3.06 eV for the composition, PMMA:CH3COOLi (60:40 wt%). From AC impedance studies, the highest value of ionic conductivity 8.21 × 10−5 S/cm at 303 K for the SPE film PMMA:CH3COOLi (60:40 wt%) is observed compared to the reported literature. From the results of Li–PMMA SPE film with high ionic conductivity, it is a promising material for the application of solid-state battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qingqing Z, Kai L, Fei D, Xingjiang L (2017) Recent advances in solid polymer electrolytes for lithium batteries. Nano Res 10:4139–4174

    Article  Google Scholar 

  2. Scrosati B (2000) Recent advances in lithium ion battery materials. Electro chim Acta 45:2461–2466

    Article  CAS  Google Scholar 

  3. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  CAS  Google Scholar 

  4. Ahmad S (2009) Polymer electrolytes: characteristics and peculiarities. Ionics 15:309–321

    Article  CAS  Google Scholar 

  5. Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9:1978–1988

    Article  CAS  Google Scholar 

  6. Li Z, Huang J, Liaw BY, Metzler V, Zhang J (2014) A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J Power Sources 254:168–182

    Article  CAS  Google Scholar 

  7. Kang X (2004) Non-aqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418

    Article  CAS  Google Scholar 

  8. Armand M (1983) Polymer solid electrolytes–an overview. Solid State Ion 9:745–754

    Article  Google Scholar 

  9. Anil A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540

    Article  CAS  Google Scholar 

  10. Kalhoff J, Eshetu GG, Bresser D, Passerini S (2015) Safer electrolytes for lithium-ion batteries: state of the art and perspectives. Chem Sus Chem 821:54–75

    Google Scholar 

  11. Marcinek M et al (2015) Electrolytes for Li-ion transport–review. Solid State Ion 276:107–126

    Article  CAS  Google Scholar 

  12. Baskakova YV, Yarmolenko OV, Efimov ON (2012) Polymer gel electrolytes for lithium batteries. Russ Chem Rev 81:367–380

    Article  CAS  Google Scholar 

  13. Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion 11:91–95

    Article  CAS  Google Scholar 

  14. Cui Y, Xinmiao L, Jingchao C, Zili C, Qinglei W, Weisheng H, Xiaochen L, Zhihong L, Guanglei C, Jiwen F (2017) Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries. Appl Mater Interfaces 9:8737–8741

    Article  CAS  Google Scholar 

  15. Jeddi K, Qazvini NT, Jafari SH, Khonakdar HA (2010) Enhanced ionic conductivity in PEO/PMMA glassy miscible blends: role of nano-confinement of minority component chains. J Polym Sci B Polym Phys 48:2065–2071

    Article  CAS  Google Scholar 

  16. Sequeira C, Santos D (2010) Polymer electrolytes fundamentals and applications. Elsevier, Amsterdam

    Google Scholar 

  17. Hellio D, Djabourov MP (2006) Physically and chemically cross linked gelatin gels. Macromol Symp 241:23–27

    Article  CAS  Google Scholar 

  18. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  19. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197

    Article  CAS  Google Scholar 

  20. Rao M, Geng X, Liao Y, Hu S, Li W (2012) Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery. J Membr Sci 37:399–400

    Google Scholar 

  21. Kim JK, Shin CR, Ahn JH, Matic A, Jacobsson P (2011) Highly porous LiMnPO4 in combination with an ionic liquid-based polymer gel electrolyte for lithium batteries. Electrochem Commun 13:1105–1108

    Article  CAS  Google Scholar 

  22. Stephan AM, Nahm KS, Kulandainathan MA, Ravi G, Wilson J (2006) Poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries. Eur Polym J 42:1728–1734

    Article  CAS  Google Scholar 

  23. Alamgir M, Abraham KM (1993) Li ion conductive electrolytes based on poly (vinyl chloride). J Electrochem Soc 140:96

    Article  Google Scholar 

  24. Saito Y, Capigila C, Yamamoto H, Mustarelli P (2000) Ionic conduction mechanisms of polyvinylidene fluoride-hexafluoropropylene type polymer electrolytes with LiN(CF3SO2)2. J Electrochem Soc 147:1645

    Article  CAS  Google Scholar 

  25. Panero S, Scrosati B (2000) Gelification of liquid-polymer systems: a valid approach for the development of various types of polymer electrolyte membranes. J Power Sources 90:13–19

    Article  CAS  Google Scholar 

  26. Malcom P, Stevens P (2000) Polymer chemistry: an introduction. J Chem Educ 77:167–176

    Google Scholar 

  27. Shukla N, Thakur AK (2009) Role of salt concentration on conductivity optimization and structural phase separation in a solid polymer electrolyte based on PMMA-LiClO4. Ionics 15:357–367

    Article  CAS  Google Scholar 

  28. Appetecchi GB, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 40:991–997

    Article  CAS  Google Scholar 

  29. Bohnke O, Frand G, Rezrazi M, Rousselot C, Truche C (1993) Fast ion transport in new lithium electrolytes gelled with PMMA-influence of polymer concentration. Solid State Ion 66:97–104

    Article  CAS  Google Scholar 

  30. Wieczorek W, Stevens JR (1997) Impedance spectroscopy and phase structure of polyether–Poly(methyl methacrylate)–LiCF3SO3 blend-based electrolytes. J Phys Chem B 101:1529–1534

    Article  CAS  Google Scholar 

  31. Ali AMM, Yahya MZA, Bahron H, Subban RHY, Harun MK, Atan I (2007) Impedance studies on plasticized PMMA-LiX [X: CF3SO3-, N(CF3SO2)2-] polymer electrolytes. Mater Lett 61:2026–2029

    Article  CAS  Google Scholar 

  32. Rajendran S, Uma T (2000) Characterization of plasticized PMMA–LiBF4 based solid polymer electrolytes. Bull Mater Sci 2:27–29

    Article  Google Scholar 

  33. Chen HW, Lin TP, Chang FC (2002) Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nano composite electrolyte containing clay. Polymer 43:5281–5288

    Article  CAS  Google Scholar 

  34. Senthil J, Nagarajan G, Neyvasagam K (2015) FTIR and ionic conductivity studies on PMMA based gel polymer electrolytes. Int J Enhanc Res Sci Technol Eng 4:76–80

    Google Scholar 

  35. ShahenoorBasha SK, SunitaSundari G, Vijay Kumar K, Rao MC (2017) Optical and dielectric properties of PVP based composite polymer electrolyte films. Polym Sci Ser A 59:554–565

    Article  CAS  Google Scholar 

  36. Abdelrazek EM, Hezma AM, El-khodary A, Elzayat AM (2016) Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt J Basic Appl Sci 3:10–15

    Article  Google Scholar 

  37. Aziz Shujahadeen B, Abdulwahid Rebar T, Rsaul Hazhar A, Ahmed Hameed M (2016) In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J Mater Sci Mater Electron 27:4163–4171

    Article  CAS  Google Scholar 

  38. Aziz SB, Abdullah OG, Hussein AM, Ahmed HM (2017) From insulating PMMA polymer to conjugated double bond behavior: green chemistry as a novel approach to fabricate small band gap polymers. Polymers 9:626

    Article  CAS  PubMed Central  Google Scholar 

  39. Ravindra NM, Ganapathy P, Choi J (2007) Energy gap–refractive index relations in semiconductors—an overview. Infrared Phys Technol 50:21–29

    Article  CAS  Google Scholar 

  40. Su’ait MS, Ahmada A, Hamzaha H, Rahman MYA (2011) Effect of lithium salt concentrations on blended 49% poly(methyl methacrylate) grafted natural rubber and poly(methyl methacrylate) based solid polymer electrolyte. Electrochim Acta 57:123–131

    Article  CAS  Google Scholar 

  41. Uma T, Mahalingam T, Stimming U (2003) Mixed phase solid polymer electrolytes based on poly(methylmethacrylate) systems. Mater Chem Phys 82:478–483

    Article  CAS  Google Scholar 

  42. Aziz Shujahadeen B, Rasheed Mariwan A, Hussein Ahang M, Ahmed Hameed M (2017) Fabrication of polymer blend composites based on [PVA-PVP](1 − x):(Ag2S)x(0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical Properties. Mater Sci Semicond Process 71:197–203

    Article  CAS  Google Scholar 

  43. Krishna Jyothi N, Vijaya Kumar K, Sunita Sundari G, Narayana Murthy P (2016) Ionic conductivity and battery characteristic studies of a new PAN-based Na + ion conducting gel polymer electrolyte system. Indian J Phys 90:289–296

    Article  CAS  Google Scholar 

  44. Gurusiddappa J, Madhuri W, Padma Suvarna R, Priya Dasan K (2016) Conductivity and dielectric behavior of polyethylene oxide-lithium perchlorate solid polymer electrolyte films. Indian J Adv Chem Sci 4:4–19

    Google Scholar 

  45. Anil A, Sharma AL, Kumar Dinesh, Sadiq M (2016) Structural and dielectric behaviour of blend polymer electrolyte based on PEO-PAN + LiPF6. Asian J Eng Appl Technol 5:4–7

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the management, Koneru Lakshmaiah Education Foundation (KLEF), for providing kind support for our work. K. Sravanthi is thankful to Dr K. Swapna for UV–visible spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sunita Sundari Gunturi or Harikrishna Erothu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurapati, S., Gunturi, S.S., Nadella, K.J. et al. Novel solid polymer electrolyte based on PMMA:CH3COOLi effect of salt concentration on optical and conductivity studies. Polym. Bull. 76, 5463–5481 (2019). https://doi.org/10.1007/s00289-018-2659-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2659-5

Keywords

Navigation