Skip to main content
Log in

High gel-strength hybrid hydrogels based on modified starch through surface cross-linking technique

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Modification of starch with a microgel latex has been suggested as a novel method for preparing a hybrid hydrogel. The microgel latex, (poly (NaAA–AA–AM–AMPS)), was synthesized through inverse emulsion polymerization and used for modification of starch. The maximum absorbency of distilled water was achieved as 87 g/g for the hybrid hydrogel. A key advantage of this hybrid hydrogel is a high percentage (about 70%) of natural component. Since hybrid hydrogels are mechanically weak, the surface cross-linking technique was carried out to increase the gel strength and the absorbency under load (AUL), by employing 3-(2,3-epoxypropoxy) propyl trimethoxysilane. The AUL of hydrogels was increased from 6.5 to 17 g/g after surface cross-linking. The current hydrogels have overcome two limitations of hybrid hydrogels (i.e., low gel strength and low contribution of the natural part) which caused them not be commercial yet. Therefore, the current hydrogels have the potential to be used in agricultural applications, due to their high AUL and low acrylamide content.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shi X, Jietang, Wang A (2015) Development of a superporous hydroxyethyl cellulose-based hydrogel by anionic surfactant micelle templating with fast swelling and superabsorbent properties. J Appl Polym Sci 132:1–8. https://doi.org/10.1002/app.42027

    Article  CAS  Google Scholar 

  2. Zhu J, Luo J (2018) Effects of entanglements and finite extensibility of polymer chains on the mechanical behavior of hydrogels. Acta Mech 229:1703–1719. https://doi.org/10.1007/s00707-017-2060-8

    Article  Google Scholar 

  3. Ghosh R, Boruah BD, Misra A (2017) Thermo-mechanical behavior of graphene oxide hydrogel. Mater Res Express 4:25006. https://doi.org/10.1088/2053-1591/aa5bf8

    Article  CAS  Google Scholar 

  4. Bao J, Chen S, Wu B et al (2015) A novel foaming approach to prepare porous superabsorbent poly(sodium acrylic acid) resins. J Appl Polym Sci 132:1–7. https://doi.org/10.1002/APP.41298

    Article  Google Scholar 

  5. Willett JL, Finkenstadt VL (2015) Starch-poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) graft copolymers prepared by reactive extrusion. J Appl Polym Sci 132:1–7. https://doi.org/10.1002/app.42405

    Article  CAS  Google Scholar 

  6. Kono H (2014) Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethylene glycol. Carbohydr Polym 106:84–93. https://doi.org/10.1016/j.carbpol.2014.02.020

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Xiao H, Li N, Ping Q, Zhang Y (2015) Synthesis and characterization of super-absorbent hydrogels based on hemicellulose. J Appl Polym Sci. https://doi.org/10.1002/app.42441

    Article  Google Scholar 

  8. Chen H, Huang H (2016) Fast-swelling superabsorbent polymers with polymerizable macromolecular surfactant as crosslinker. J Appl Polym Sci 133:1–7. https://doi.org/10.1002/app.44173

    Article  CAS  Google Scholar 

  9. Huang Z, Liu S, Zhang B, Wu Q (2014) Preparation and swelling behavior of a novel self-assembled β-cyclodextrin/acrylic acid/sodium alginate hydrogel. Carbohydr Polym 113:430–437. https://doi.org/10.1016/j.carbpol.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  10. Yang H, Kang W, Wu H, Zhe L, Yang Y, Yao L (2016) Passive microrheology for measurement of gelation behavior of a kind of polymer gel P(AM-AA-AMPS). J Appl Polym Sci 133:1–8. https://doi.org/10.1002/app.43364

    Article  CAS  Google Scholar 

  11. Ibrahim MM, Abd-Eladl M, Abou-Baker NH (2015) Lignocellulosic biomass for the preparation of cellulose-based hydrogel and its use for optimizing water resources in agriculture. J Appl Polym Sci 132:1–12. https://doi.org/10.1002/app.42652

    Article  CAS  Google Scholar 

  12. Shi J, Fan L, Song J, Bai W (2012) Swelling properties and kinetics of starch-g-poly(acrylic acid) hydrogels. Adv Mater Res 550–553:1316–1320

    Google Scholar 

  13. Sabzevari A, Kabiri K (2016) Converting date seed biomass into highly absorbing hydrogel. Iran Polym J 25:597–606. https://doi.org/10.1007/s13726-016-0450-8 (English Ed)

    Article  CAS  Google Scholar 

  14. Moini N, Kabiri K (2015) Effective parameters in surface cross-linking of acrylic-based water absorbent polymer particles using bisphenol A diethylene glycidyl ether and cycloaliphatic diepoxide. Iran Polym J 24:977–987

    Article  CAS  Google Scholar 

  15. Jockusch S, Turro NJ, Mitsukami Y, Matsumoto M, Iwamura T, Lindner T, Flohr A, Gal Massimo (2009) Photoinduced surface crosslinking of superabsorbent polymer particles. J Appl Polym Sci 111:2163–2170. https://doi.org/10.1002/app.29209

    Article  CAS  Google Scholar 

  16. Moini N, Kabiri K, Zohuriaan-Mehr MJ (2015) Practical improvement of SAP hydrogel properties via facile tunable cross-linking of the particles surface. Polym Plast Technol Eng 55:278–290. https://doi.org/10.1080/03602559.2015.1070873

    Article  CAS  Google Scholar 

  17. Ashkani M, Kabiri K, Salimi A, Bouhendi H (2018) Hybrid hydrogel based on pre-gelatinized starch modified with glycidyl-crosslinked microgel. Iran Polym J 27:183–192. https://doi.org/10.1007/s13726-018-0599-4

    Article  CAS  Google Scholar 

  18. Kabiri K, Azizi A, Zohuriaan-Mehr M (2011) Super-alcogels based on 2-Acrylamido-2-methylpropane sulphonic acid and poly (ethylene glycol) macromer. Iran Polym 20:175–183

    CAS  Google Scholar 

  19. Bagheri Marandi G, Azizi A, Kabiri K, Zohuriaan-Mehr MJ, Boohendi H (2010) An alcogel based on poly(2-acrylamido-2-methylpropane sulphonic acid) and the effect of neutralization degree on its swelling, thermal and mechanical properties. Iran Polym J 23:145–153

    Google Scholar 

  20. Hajighasem A, Kabiri K (2015) Novel crosslinking method for preparation of acrylic thickener microgels through inverse emulsion polymerization. Iran Polym J 24:1049–1056. https://doi.org/10.1007/s13726-015-0392-6

    Article  CAS  Google Scholar 

  21. Lee JS, Kumar RN, Rozman HD, Azemi BMN (2005) Pasting, swelling and solubility properties of UV initiated starch-graft-poly(AA). Food Chem 91:203–211

    Article  CAS  Google Scholar 

  22. Sabzevari A, Kabiri K, Siahkamari M (2016) Induced superabsorbency in polyester fiber. Iran Polym J 25:635–646. https://doi.org/10.1007/s13726-016-0454-4 (English Ed)

    Article  CAS  Google Scholar 

  23. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477. doi: http://journal.ippi.ac.ir. (English Ed)

  24. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2009) Introduction to spectroscopy. Fourth Edi, Washington

    Google Scholar 

  25. Wintgens V, Lorthioir C, Dubot P, Sébille B, Amiel C (2015) Cyclodextrin/dextran based hydrogels prepared by cross-linking with sodium trimetaphosphate. Carbohydr Polym 132:80–88. https://doi.org/10.1016/j.carbpol.2015.06.038

    Article  CAS  PubMed  Google Scholar 

  26. Dash R, Cateto CA, Ragauskas AJ (2013) Synthesis of a co-cross-linked nanocomposite hydrogels from poly(methyl vinyl ether-co-maleic acid)-polyethylene glycol and nanofibrillated cellulose. Cellulose 21:529–534

    Article  CAS  Google Scholar 

  27. Ramazani-Harandi MJ, Zohuriaan-Mehr MJ, Yousefi AA, Ershad-Langroudi A, Kabiri K (2006) Rheological determination of the swollen gel strength of superabsorbent polymer hydrogels. Polym Test 25:470–474

    Article  CAS  Google Scholar 

  28. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2008) Undesirable effects of heating on hydrogels. J Appl Polym Sci 110:3420–3430. https://doi.org/10.1002/app.28148

    Article  CAS  Google Scholar 

  29. Kabiri K, Azizi A, Zohuriaan-mehr MJ (2011) Super-alcogels based on. 20:175–183

    CAS  Google Scholar 

  30. Witono JR, Noordergraaf IW, Heeres HJ, Janssen LPBM (2014) Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. Carbohydr Polym 103:325–332. https://doi.org/10.1016/j.carbpol.2013.12.056

    Article  CAS  PubMed  Google Scholar 

  31. Azizi A, Kabiri K, Zohuriaan-Mehr MJ, Bouhendi H, Karami Z (2018) Transamidation: a feasible approach of surface modification to improve absorbency under load of agricultural superabsorbent materials. J Mater Res 33:2327–2335. https://doi.org/10.1557/jmr.2018.240

    Article  CAS  Google Scholar 

  32. Pimpa W, Pimpa C (2014) Characterization of durian seed starch/PVOH composite hydrogel as a potential adsorbent for removal of hazardous dyes. Adv Mater Res 931–932:286–290

    Article  CAS  Google Scholar 

  33. Wang J, Zhou X, Xiao H (2013) Structure and properties of cellulose/poly (N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754

    Article  CAS  PubMed  Google Scholar 

  34. Abd Alla SG, Sen M, El-Naggar AWM (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89:478–485. https://doi.org/10.1016/j.carbpol.2012.03.031

    Article  CAS  PubMed  Google Scholar 

  35. Peng F, Guan Y, Zhang B, Bian J, Ren JL, Yao CL, Sun RC (2014) Synthesis and properties of hemicelluloses-based semi-IPN hydrogels. Int J Biol Macromol 65:564–572

    Article  CAS  PubMed  Google Scholar 

  36. Mohamed RR, Abu Elella MH, Sabaa MW (2015) Synthesis, characterization and applications of N-quaternized chitosan/poly(vinyl alcohol) hydrogels. Int J Biol Macromol 80:149–161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kabiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, F., Kabiri, K., Bouhendi, H. et al. High gel-strength hybrid hydrogels based on modified starch through surface cross-linking technique. Polym. Bull. 76, 4047–4068 (2019). https://doi.org/10.1007/s00289-018-2593-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2593-6

Keywords

Navigation