Skip to main content

Advertisement

Log in

Effect of incompletely condensed tri-silanol-phenyl-POSS on the thermal stability of silicone rubber

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In most cases, incompletely condensed tri-silanol-phenyl-polyhedral oligomeric silsesquioxane (SSOH) was used as an intermediate to synthesize the polyhedral oligomeric silsesquioxane (POSS) with special structure. In this paper, SSOH was well synthesized and then immediately incorporated into hydroxyl-terminated polydimethylsiloxane (PDMS) as a co-cross-linking agent to prepare room-temperature-vulcanized (RTV) silicone rubber (SSOH-PDMS). Thermogravimetric analysis (TGA) results showed that the chemical incorporation of POSS into PDMS networks exerted significant enhancement of thermal stability for the rubber nanocomposites. For SSOH-PDMS with 5 wt% SSOH, the degradation temperature of 5% weight loss were delayed from 364.78 to 379.50 °C, while the temperature for 30% weight loss were increased by 47.4 °C. By monitoring the degradation behavior by TGA coupled with Fourier transform infrared spectroscopy (FTIR), the degradation mechanism of the modified RTV silicone rubber containing different concentration of the cross-linker SSOH has been investigated. The results showed that the SSOH greatly influenced the degradation mechanism of PDMS rubber in two ways: ① The reaction with the silanols in PDMS can diminish the degradation initiated by hydroxyl-terminal during the first degradation stage; ② the nanoreinforcement effect of POSS on the PDMS can delay the temperatures of the second thermal degradation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Srividhya M, Madhavan K, Reddy BSR (2006) Synthesis of novel soluble poly(imide-siloxane)s via hydrosilylation: characterization and structure property behaviour. Eur Polym J 42:2743

    Article  CAS  Google Scholar 

  2. Liu YR, Huang YD, Liu L (2007) Influences of monoSilanolIsobutyl-POSS on thermal stability of polymethylsilxoane. J Mater Sci 42:5544

    Article  CAS  Google Scholar 

  3. Shi Y et al (2013) Nano-calcium carbonate (CaCO3)/polystyrene (PS) core–shell nanoparticle: it’s effect on physical and mechanical properties of high impact polystyrene (HIPS). J Polym Res 20:245

    Article  CAS  Google Scholar 

  4. Sim LC et al (2005) Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta 430:155

    Article  CAS  Google Scholar 

  5. Dickstein WH, Siemens RL, Hadziioannou E (1990) Dynamic mechanical and thermogravimetric analyses of the effect of ferric oxide on the thermaloxidative degradation of silicone rubber. Thermochim Acta 166:137

    Article  CAS  Google Scholar 

  6. Osman MA et al (2002) Reinforcement of poly(dimethylsiloxane) networks by montmorillonite platelets. J Appl Polym Sci 83:2175

    Article  CAS  Google Scholar 

  7. Pan G, Mark JE, Schaefer DW (2003) Synthesis and characterization of fillers of controlled structure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers. J Polym Sci Part B Polym Phys 41:3314

    Article  CAS  Google Scholar 

  8. Pyun J, Matyjaszewski K (2000) The synthesis of hybrid polymers using atom transfer radical polymerization: homopolymers and block copolymers from polyhedral oligomeric silsesquioxane monomers. Macromolecules 33:217

    Article  CAS  Google Scholar 

  9. Mather PT et al (1999) Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromolecules 32:1194

    Article  CAS  Google Scholar 

  10. Zheng L, Farris RJ, Coughlin EB (2001) Novel polyolefin nanocomposites:  synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 34:8034

    Article  CAS  Google Scholar 

  11. Lee A, Lichtenhan JD (1998) Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 31:4970

    Article  CAS  PubMed  Google Scholar 

  12. Liu L et al (2007) Combustion and thermal properties of OctaTMA-POSS/PS composites. J Mater Sci 42:4325

    Article  CAS  Google Scholar 

  13. Packirisamy S, Schwam D, Litt MH (1995) Atomic oxygen resistant coatings for low earth orbit space structures. J Mater Sci 30:308

    Article  CAS  Google Scholar 

  14. Lichtenhan JD, Otonari YA, Carr MJ (1995) Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28:8435

    Article  CAS  Google Scholar 

  15. Haddad TS, Lichtenhan JD (1996) Hybrid organic–inorganic thermoplastics:  styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 29:7302

    Article  CAS  Google Scholar 

  16. Tsuchida A et al (1997) Ethene and propene copolymers containing silsesquioxane side groups. Macromolecules 30:2818

    Article  CAS  Google Scholar 

  17. Fina A et al (2005) Polypropylene–polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 46:7855

    Article  CAS  Google Scholar 

  18. Xu H et al (2002) Preparations, thermal properties, and T g increase mechanism of inorganic/organic hybrid polymers based on polyhedral oligomeric silsesquioxanes. Macromolecules 35:8788

    Article  CAS  Google Scholar 

  19. Zheng L, Farris RJ, Coughlin EB (2001) Novel polyolefin nanocomposites:  synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 34:8034

    Article  CAS  Google Scholar 

  20. Xu H et al (2005) Preparation, thermal properties, and T g increase mechanism of poly(acetoxystyrene-co-octavinyl-polyhedral oligomeric silsesquioxane) hybrid nanocomposites. Macromolecules 38:10455

    Article  CAS  Google Scholar 

  21. Xu H et al (2007) Preparation, T g improvement, and thermal stability enhancement mechanism of soluble poly(methyl methacrylate) nanocomposites by incorporating octavinyl polyhedral oligomeric silsesquioxanes. J Polym Sci Part A Polym Chem 45:5308

    Article  CAS  Google Scholar 

  22. Markovic E et al (2007) Poly(ethylene glycol)-octafunctionalized polyhedral oligomeric silsesquioxane:  synthesis and thermal analysis. Macromolecules 40:2694

    Article  CAS  Google Scholar 

  23. Bolln C et al (1997) Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater 9:1475

    Article  CAS  Google Scholar 

  24. Yang B-H et al (2009) Design and architecture of low-dielectric-constant organic–inorganic hybrids from octahydridosilsesquioxanes. J Mater Chem 19:9038

    Article  CAS  Google Scholar 

  25. Su H-W, Chen W-C (2009) Preparation of nanoporous poly(methyl silsesquioxane) films using core–shell silsesquioxane as porogen. Mater Chem Phys 114:736

    Article  CAS  Google Scholar 

  26. Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649

    Article  CAS  Google Scholar 

  27. Longhi M et al (2016) Influence of the functionality of polyhedral oligomeric silsesquioxane–POSS containing glycidyl groups on the dispersion and interaction with epoxy nanocomposites. Polym Compos. https://doi.org/10.1002/pc.23991

    Article  Google Scholar 

  28. Fernández MD, Fernández MJ, Cobos M (2016) Effect of polyhedral oligomeric silsesquioxane (POSS) derivative on the morphology, thermal, mechanical and surface properties of poly(lactic acid)-based nanocomposites. J Mater Sci 51:3628

    Article  CAS  Google Scholar 

  29. Shi Y et al (2014) Synthesis and thermal properties of modified room temperature vulcanized (RTV) silicone rubber using polyhedral oligomeric silsesquioxane (POSS) as a cross linking agent. RSC Adv 4:41453

    Article  CAS  Google Scholar 

  30. Ni Y, Zheng S, Nie K (2004) Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 45:5557

    Article  CAS  Google Scholar 

  31. Teo JKH et al (2007) Epoxy/polyhedral oligomeric silsesquioxane (POSS) hybrid networks cured with an anhydride: cure kinetics and thermal properties. Polymer 48:5671

    Article  CAS  Google Scholar 

  32. Camino G, Lomakin SM, Lazzari M (2001) Polydimethylsiloxane thermal degradation. Part 1. Kinetic aspects. Polymer 42:2395

    Article  CAS  Google Scholar 

  33. Lewicki JP et al (2008) The stability of polysiloxanes incorporating nano-scale physical property modifiers. Sci Technol Adv Mater 9:024403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen D et al (2010) Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using vinyl-POSS derivatives as cross linking agents. Polymer 51:3867

    Article  CAS  Google Scholar 

  35. Grassie N, Macfarlane IG (1978) The thermal degradation of polysiloxanes—I. Poly(dimethylsiloxane). Eur Polym J 14:875

    Article  CAS  Google Scholar 

  36. Thomas TH, Kendrick TC (1969) Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres. J Polym Sci Part A-2 Polym Phys 7:537

    Article  CAS  Google Scholar 

  37. Grassie N, Macfarlane IG, Francey KF (1979) The thermal degradation of polysiloxanes—II. Poly(methylphenylsiloxane). Eur Polym J 15:415

    Article  CAS  Google Scholar 

  38. Kučera M, Lanikova J (1961) Thermal stability of polydimethylsiloxane. I. Deactivation of basic active centers. J Polym Sci 54:375

    Article  Google Scholar 

  39. Camino G, Lomakin SM, Lageard M (2002) Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer 43:2011

    Article  CAS  Google Scholar 

  40. Nikitina TS et al (1968) Thermal degradation of polysiloxanes with hetero-units in the chain and modified with low molecular weight additives. Polym Sci USSR 10:3228

    Article  Google Scholar 

  41. Romo-Uribe A et al (1998) Viscoelastic and morphological behavior of hybrid styryl‐based polyhedral oligomeric silsesquioxane (POSS) copolymers. J Polym Sci Part B Polym Phys 36:1857

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from funding provided by the National Natural Science Foundation of China (Grant No. 51073097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Liu, H., Wei, H. et al. Effect of incompletely condensed tri-silanol-phenyl-POSS on the thermal stability of silicone rubber. Polym. Bull. 76, 2835–2850 (2019). https://doi.org/10.1007/s00289-018-2499-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2499-3

Keywords

Navigation