Skip to main content
Log in

Preparation, analyses and application of cobalt–manganese oxides/nylon 6,6 nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nylon 6,6 polymer and cobalt–manganese oxide nanoparticles (Co–Mn NPs)/nylon 6,6 nanocomposites were prepared by solution casting method. The morphological study illustrated that the Co–Mn NPs were well dispersed within the membrane. The differential scanning calorimetry (DSC) analyses presented that the melting temperature (Tm) and crystallization temperature (Tc) of Co–Mn NPs/nylon 6,6 membranes were higher than neat nylon 6,6, while the mechanical properties of nanocomposite membranes were lower than neat nylon 6,6. The nanocomposite and neat nylon 6,6 membranes were also used for the decolorization of alizarin red dye in an aqueous medium as a function of time. It was found that about 70–83% of dye was decolorized within 150 min using nanocomposite membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3:3654–3674

    Article  CAS  PubMed Central  Google Scholar 

  2. Schmidt G, Malwitz MM (2003) Properties of polymer–nanoparticle composites. Curr Opin Colloid Interface Sci 8:103–108

    Article  CAS  Google Scholar 

  3. Yan LT, Xie XM (2013) Computational modeling and simulation of nanoparticle self-assembly in polymeric systems: structures, properties and external field effects. Prog Polym Sci 38:369–405

    Article  CAS  Google Scholar 

  4. Hanemann T, Szabo DV (2010) Polymer–nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517

    Article  CAS  PubMed Central  Google Scholar 

  5. Chafidz A, Ali I, Mohsin MEA, Elleithy R, Al-Zahrani S (2012) Atomic force microscopy, thermal, viscoelastic and mechanical properties of HDPE/CaCO3 nanocomposites. J Polym Res 19:9860

    Article  CAS  Google Scholar 

  6. Ahmadpoor P, Nateri AS, Motaghitalab V (2013) The optical properties of PVA/TiO2 composite nanofibers. J Appl Polym Sci 130:78–85

    Article  CAS  Google Scholar 

  7. Sinha T, Ahmaruzzaman M, Bhattacharjee A (2014) A simple approach for the synthesis of silver nanoparticles and their application as a catalyst for the photodegradation of methyl violet 6B dye under solar irradiation. J Env Chem Eng 2:2269–2279

    Article  CAS  Google Scholar 

  8. Selvam GG, Sivakumar K (2014) Phyco-synthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J. V. Lamouroux. Appl Nanosci 5:617–622

    Article  CAS  Google Scholar 

  9. Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (allium cepa) extract and their antibacterial activity. Dig J Nanomater Bios 5:427–432

    Google Scholar 

  10. Zori MH (2011) Synthesis of TiO2 nanoparticles by Microemulsion/Heat treated method and photodegradation of methylene blue. J Inorg Organomet Polym 21:81–90

    Article  CAS  Google Scholar 

  11. Pouretedal HR, Kiyani M (2014) Photodegradation of 2-nitrophenol catalyzed by CoO, CoS and CoO/CoS nanoparticles. J Iran Chem Soc 11:271–277

    Article  CAS  Google Scholar 

  12. Sauter C, Emin MA, Schuchmann HP, Tavman S (2008) Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrason Sonochem 15:517–523

    Article  CAS  PubMed  Google Scholar 

  13. Latha P, Dhanabackialakshmi R, Kumar PS, Karuthapandian S (2016) Synergistic effects of trouble free and 100% recoverable CeO2/nylon nanocomposite thin film for the photocatalytic degradation of organic contaminants Origin. Sep Purif Technol 168:124–133

    Article  CAS  Google Scholar 

  14. Škorić ML, Terzić I, Milosavljević N, Radetić M, Šaponjić Z, Radoičić M, Krušić MK (2016) Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes. Eur Polym J 82:57–70

    Article  Google Scholar 

  15. Kalyani R, Gurunathan K (2016) PTh-rGO-TiO2 nanocomposite for photocatalytic hydrogen production and dye degradation. J Photochem Photobio A 329:105–112

    Article  CAS  Google Scholar 

  16. Saeed K, Khan I, Shah T, Park SY (2015) Synthesis, characterization and photocatalytic activity of silver nanoparticles/amidoxime-modified polyacrylonitrile nanofibers. Fiber Polym 16:1870–1875

    Article  CAS  Google Scholar 

  17. Omolola EF, Abolanle SA, Eno EE (2016) A sensor for the determination of lindane using PANI/Zn, Fe(III) oxides and nylon 6,6/MWCNT/Zn, Fe(III) oxides nanofibers modified glassy carbon electrode. J Nanomater 2016:1–10

    Google Scholar 

  18. Charles J, Ramkumaar GR, Azhagiri S, Gunasekaran S (2009) FTIR and thermal studies on nylon-66 and 30% glass fiber reinforced nylon-66. E J Chem 6:23–33

    Article  CAS  Google Scholar 

  19. Charles J, Ramkumaar GR, Azhagiri S, Gunasekaran S (2009) FTIR and thermal studies on nylon-66 and 30% glass fiber reinforced nylon-66. J Chem 6:23–33

    CAS  Google Scholar 

  20. Brown RJC, Brown RFC (2000) Melting point and molecular symmetry. J Chem Edu 77:724–731

    Article  CAS  Google Scholar 

  21. Lu H, Xu X, Li X, Zhang Z (2006) Morphology, crystallization and dynamic mechanical properties of PA66/nano-SiO2 composites. Bull Mater Sci 29:485–490

    Article  CAS  Google Scholar 

  22. Han K, Yu M (2006) Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation. J Appl Polym Sci 100:1588–1593

    Article  CAS  Google Scholar 

  23. Zhang X, Simon LC (2005) In situ polymerization of hybrid polyethylene-alumina nanocomposites. Macromol Mater Eng 290:573–583

    Article  CAS  Google Scholar 

  24. Chae DW, Kim BC (2005) Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym Adv Technol 16:846–850

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Saeed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, K., Khan, I., Ahmad, Z. et al. Preparation, analyses and application of cobalt–manganese oxides/nylon 6,6 nanocomposites. Polym. Bull. 75, 4657–4669 (2018). https://doi.org/10.1007/s00289-018-2292-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2292-3

Keywords

Navigation