Skip to main content
Log in

Novel heat-resistant and soluble poly(amide–ether)/zinc oxide nanocomposites: synthesis, characterization and computational study

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Novel heat-resistant poly(amide–ether)/zinc oxide nanocomposites containing two different types of ZnO nanoparticles were successfully prepared by a solution intercalation technique. A new poly(amide–ether) (PAE) as a source of polymeric matrix was synthesized by direct polycondensation reaction of new diamine containing 1,3,4-oxadiazole and biphenyl groups with 4,4′-(butane-1,4-diylbis(oxy))dibenzoic acid in a medium consisting of N-methyl-2-pyrrolidone,triphenyl phosphite, calcium chloride, and pyridine. Fourier-transform infrared (FTIR), nuclear magnetic resonance (1H NMR), and UV–Vis technique were used for characterization of as-synthesized PAE. The synthesized PAE revealed good solubility in dipolar aprotic solvents at room temperature and the inherent viscosity of the PAE in DMF at a concentration of 0.01 g dL−1 at 25 °C was 0.34 dL/g. Improved solubility was attributed to the presence of flexible ether linkage in the polyamide backbones that reduce the chain–chain interaction and enhance solubility by penetrating solvent molecules into the polyamide chains. The structural and electronic properties of PAE units were studied by ab initio density functional theory method using the B3LYP/6-31G (d) level of theory. Due to incorporation of biphenyl group as an electron donor on the 1,3,4-oxadiazole ring in the structure of PAE, the highest occupied molecular orbitals (HOMO) are localized mainly on biphenyl group. The calculated absorption spectrum of the studied PAE exhibited the maximum absorption wavelength which corresponds to the electronic transition from the HOMO-1 to LUMO with 92% contribution. Zinc oxide nanoparticles were synthesized by a direct precipitation method from zinc nitrate solution and were modified with 1-methyl-3-(trimethoxysilylpropyl) imidazolium chloride. The PAE/ZnO nanocomposite films were prepared by simple dissolution technique using 3 wt% of ZnO nanoparticles and modified ZnO nanoparticles. The morphology, crystalline phase, and thermal stability of the resultant materials were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), thermal gravimetric analysis (TGA), and FTIR techniques. The FE-SEM analysis showed better dispersion of ZnO@ImCl nanoparticles within the poly(amide–ether) matrix in comparison with ZnO nanoparticles, which arises from high interactions between ZnO@ImCl and the PAE chains. Thermogravimetric analysis results indicated improving on thermal properties of the poly(amide–ether) nanocomposites as compared with the neat poly(amide–ether). The incorporation of functional ZnO@ImCl nanoparticles could further improve the thermal properties of poly(amide–ether). The high interaction between poly(amide–ether) and ZnO@ImCl nanoparticles, the presence of oxadiazole, ether, amide and imidazole content of the ZnO@ImCl nanoparticles seem to be responsible for the improvement of the thermal properties. Furthermore, the presence of oxadiazole, ether, amide and bulky biphenyl groups in the poly(amide–ether) backbone increased the solubility in organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 4
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cassidy PE (1980) Thermally stable polymers: synthesis and properties. Marcel Dekker Inc, New York

    Google Scholar 

  2. García JM, García FC, Serna F, José L (2010) High-performance aromatic polyamides. Prog Polym Sci 35:623–686

    Article  CAS  Google Scholar 

  3. Moghanian H, Mobinikhaledi A, Monjezi R (2015) Synthesis and characterization of novel aliphatic–aromatic polyamide/Fe3O4 nanocomposites containing pendent 9H-xanthene groups. Des Monomers Polym 18:157–169

    Article  CAS  Google Scholar 

  4. Faghihi K, Moghanian H (2010) Synthesis and characterization of optically active poly (amide-imide)s containing photosensitive chalcone units in the main chain. Chin J Polym Sci 28:695–704

    Article  CAS  Google Scholar 

  5. Moghanian H, Ebrahimi S, Mohamadi A (2013) Soluble new optically active poly (amide–imide)s derived from photosensitive 4, 4′-diaminochalcone and chiral N, N′-(pyromellitoyl)-bis-L-amino acids: synthesis and characterization. Arab J Sci Eng 38:1721–1729

    Article  CAS  Google Scholar 

  6. Jeong HJ, Oishi Y, Kakimoto MA, Imai Y (1990) Synthesis and characterization of novel aromatic polyamides from 3, 4‐bis (4‐aminophenyl)‐2, 5‐diphenylfuran and aromatic diacid chlorides. J Polym Sci 28:3293–3301

    Article  CAS  Google Scholar 

  7. Jeong HJ, Kakimoto MA, Imai Y (1991) Synthesis and characterization of new soluble aromatic polyimides from 3, 4‐bis (4‐aminophenyl)‐2, 5‐diphenylpyrrole and aromatic tetracarboxylic dianhydrides. J Polym Sci 29:1691–1695

    Article  CAS  Google Scholar 

  8. Imai Y, Maldar N, Kakimoto MA (1985) Synthesis and characterization of soluble aromatic polyamides from 2, 5‐bis (4‐aminophenyl)—3, 4‐diphenylthiophene and aromatic diacid chlorides. J Polym Sci 23:1797–1803

    CAS  Google Scholar 

  9. Mallakpour S, Kolahdoozan M (2008) Synthesis and properties of novel soluble aromatic polyamides derived from 5-(2-phthalimidyl-3-methyl butanoylamino) isophthalic acid and aromatic diamines. React Funct Polym 68:91–96

    Article  CAS  Google Scholar 

  10. Bazzar M, Ghaemy M, Alizadeh R (2012) Novel fluorescent light-emitting polymer composites bearing 1, 2, 4-triazole and quinoxaline moieties: reinforcement and thermal stabilization with silicon carbide nanoparticles by epoxide functionalization. Polym Degrad Stab 97:1690–1703

    Article  CAS  Google Scholar 

  11. Song R, Yang D, He L (2008) Preparation of semi-aromatic polyamide (PA)/multi-wall carbon nanotube (MWCNT) composites and its dynamic mechanical properties. J Mater Sci 43:1205–1213

    Article  CAS  Google Scholar 

  12. Shabanian M, Ghanbari D (2013) Synthesis of magnesium hydroxide nanofiller and its use for improving thermal properties of new poly (ether‐amide). J Appl Polym Sci 127:2004–2009

    Article  CAS  Google Scholar 

  13. Moghanian H, Mobinikhaledi A, Baharangiz Z (2014) Synthesis, characterization and magnetic properties of novel heat resistant polyimide nanocomposites derived from 14H-dibenzo [a,j] xanthene. J Polym Res 21:513

    Article  CAS  Google Scholar 

  14. Hajibeygi M, Shabanian M, Khonakdar HA (2017) Amide–acid functional SiO2 nanocomposites based on new semi-crystalline poly(ether-sulfone-amide): thermal, combustion and mechanical studies. Polym Int 66:133–143

    Article  CAS  Google Scholar 

  15. Shabbir S, Zulfiqar S, Ahmad Z, Sarwar MI (2010) Synthesis, characterization and functionalization of thermally stable hyperbranched polyamide-ethers based on 6-hydroxy-2, 4-bis (4′-nitrobenzamide) pyrimidine. Polym Degrad Stab 95:500–507

    Article  CAS  Google Scholar 

  16. Oishi Y, Padmanaban M, Kakimoto M-A, Imai Y (1992) Synthesis and properties of aromatic polyureas from N,N′-bis(trimethylsilyl)-substituted aromatic diamines and aromatic diisocyanates. J Polym Sci 30:1363–1368

    Article  CAS  Google Scholar 

  17. Liaw D-J, Chen W-H (2006) High glass transitions of novel organosoluble polyamide-imides based on noncoplanar and rigid diimide-dicarboxylic acid. Polym Degrad Stab 91:1731–1739

    Article  CAS  Google Scholar 

  18. Mehdipour-Ataei S, Amirshaghaghi A (2004) Preparation and properties of new thermally stable poly (ether imide amide)s. Polym Int 53:1185–1190

    Article  CAS  Google Scholar 

  19. Hamciuc C, Bruma M, Mercer F, Kopnick T, Schulz B (2000) Thin films from new poly(imide‐ether‐amide)s containing hexafluoroisopropylidene groups. Macromol Mater Eng 276:38–43

    Article  Google Scholar 

  20. Khoee S, Zamani S (2007) Synthesis, characterization and fluorimetric studies of novel photoactive poly (amide-imide) from anthracene 9-carboxaldehyde and 4, 4′-diaminodiphenyl ether by microwave irradiation. Eur Polym J 43:2096–2110

    Article  CAS  Google Scholar 

  21. Hajibeygi M, Shabanian M, Moghanian H, Khonakdar H, Häußler L (2015) Development of one-step synthesized LDH reinforced multifunctional poly (amide–imide) matrix containing xanthene rings: study on thermal stability and flame retardancy. RSC Adv 5:53726–53735

    Article  CAS  Google Scholar 

  22. Srivastava R (2012) Synthesis and characterization techniques of nanomaterials. Int J Green Nanotech 4:17–27

    Article  Google Scholar 

  23. Wen J, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol-gel approach. Chem Mater 8:1667–1681

    Article  CAS  Google Scholar 

  24. Ash BJ, Siegel RW, Schadler LS (2004) Glass‐transition temperature behavior of alumina/PMMA nanocomposites. J Polym Sci 42:4371–4383

    Article  CAS  Google Scholar 

  25. Li X, Warzywoda J, McKenna GB (2014) Mechanical responses of a polymer graphene-sheet nano-sandwich. Polymer 55:4976–4982

    Article  CAS  Google Scholar 

  26. Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40:696–753

    Article  CAS  PubMed  Google Scholar 

  27. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2000) Irradiation graft polymerization on nano-inorganic particles: an effective means to design polymer-based nanocomposites. J Mater Sci Lett 19:1159–1161

    Article  CAS  Google Scholar 

  28. Suzuki F, Onozato K, Kurokawa Y (1990) A formation of compatible poly (vinyl alcohol)/alumina gel composite and its properties. J Appl Polym Sci 39:371–381

    Article  CAS  Google Scholar 

  29. Shang S, Williams J, Söderholm K-J (1992) Using the bond energy density to predict the reinforcing ability of a composite. J Mater Sci 27:4949–4956

    Article  CAS  Google Scholar 

  30. Chen Y, Zhao H, Liu B, Yang H (2015) Charge separation between wurtzite ZnO polar {001} surfaces and their enhanced photocatalytic activity. Appl Catal B 163:189–197

    Article  CAS  Google Scholar 

  31. Khanchandani S, Kundu S, Patra A, Ganguli AK (2013) Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis. J Phys Chem C 117:5558–5567

    Article  CAS  Google Scholar 

  32. Djurišić AB, Chen X, Leung YH, Ng AMC (2012) ZnO nanostructures: growth, properties and applications. J Mater Chem 22:6526–6535

    Article  CAS  Google Scholar 

  33. Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112:269–278

    Article  CAS  PubMed  Google Scholar 

  34. Mallakpour S, Aalizadeh R (2016) Preparation and characterization of thermally stable poly (amide–ester–imide) nanocomposites based on N, N′-(1, 3, 5, 7-tetraoxo-5, 7-dihydropyrrolo [3, 4-f] isoindole-2, 6-(1H, 3H)-diyl) bis-(4-hydroxybenzamide) and surface-coated TiO2 nanoparticles. Polym Bull 73:3019–3032

    Article  CAS  Google Scholar 

  35. Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  36. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  37. O’ Boyle NM, Tenderholt AL, Langer KM (2008) cclib: a library for package‐independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  CAS  Google Scholar 

  38. Faghihi K, Shabanian M (2010) Novel poly (ether-amide)s derived from 1, 4-(4-carboxy phenoxy) butane and ethereal diamines: synthesis and properties. Macromol Res 18:1148–1153

    Article  CAS  Google Scholar 

  39. Chen C, Liu P, Lu C (2008) Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. Chem Eng J 144:509–513

    Article  CAS  Google Scholar 

  40. Liaw DJ, Wang KL, Chang FC (2007) Novel organosoluble poly (pyridine−imide) with pendent pyrene group: synthesis, thermal, optical, electrochemical, electrochromic, and protonation characterization. Macromolecules 40:3568–3574

    Article  CAS  Google Scholar 

  41. Padmaja L, Ravikumar C, Sajan D, Hubert Joe I, Jayakumar VS, Pettit GR, Faurskov Nielsen O (2009) Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin‐A2. J Raman Spect 40:419–428

    Article  CAS  Google Scholar 

  42. Tzamalis G, Lemaur V, Karlsson F, Holtz PO, Andersson M, Crispin X, Cornil J, Berggren M (2010) Fluorescence light emission at 1eV from a conjugated polymer. Chem Phys Lett 489:92–95

    Article  CAS  Google Scholar 

  43. Cornil J, dos Santos DA, Crispin X, Silbey R, Brédas JL (1998) Influence of interchain interactions on the absorption and luminescence of conjugated oligomers and polymers: a quantum-chemical characterization. J Am Chem Soc 120:1289–1299

    Article  CAS  Google Scholar 

  44. Chen C, Yu B, Liu J, Dai Q, Zhu Y (2007) Investigation of ZnO films on Si< 111> substrate grown by low energy O+ assisted pulse laser deposited technology. Mater Lett 61:2961–2964

    Article  CAS  Google Scholar 

  45. Yamazaki N, Matsumoto M, Higashi F (1975) Studies on reactions of the N‐phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J Polym Sci 13:1373–1380

    CAS  Google Scholar 

  46. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, their estimation and correlation with chemical structure, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Moghanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faridi, S., Moghanian, H. & Shabanian, M. Novel heat-resistant and soluble poly(amide–ether)/zinc oxide nanocomposites: synthesis, characterization and computational study. Polym. Bull. 75, 4445–4468 (2018). https://doi.org/10.1007/s00289-018-2280-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2280-7

Keywords

Navigation