Skip to main content

Advertisement

Log in

Proton-conducting phosphotungstic acid/sulfonated fluorinated block copolymer composite membrane for polymer electrolyte fuel cells with reduced hydrogen permeability

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A sulfonated fluorinated block copolymer (SFBC) consisting of sulfone and ether bridges was synthesized via nucleophilic substitution polymerization, and then incorporated with 10, 20 or 30 wt% of phosphotungstic acid (PWA) using facile solution casting approach to fabricate composite membranes. The monomer sulfonation was carried out for SFBC to avoid the random sulfonation that can degrade the mechanical strength of polymer chains. A higher local concentration of acidic moieties within molecular frameworks of PWA and good mechanical properties allow for an unprecedented approach to tailor the proton conductivity as well as mechanical strength of composite membrane, as evidenced by alternating current (AC) impedance and dynamic mechanical (DMA) analyses. The surface morphological properties and roughness of membranes were investigated by field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM); the composite membranes exhibited even and denser dispersion of PWA in polymer matrix. Compared to pristine SFBC-50, the water uptake, hydrophilicity and ion exchange capacity of SFBC-50/PWA-X membranes were significantly improved. The peak proton conductivity of SFBC-50/PWA-30 membrane at 90 °C under 100% relative humidity (RH) is 105.22 mS/cm, which is 2.55 folds higher than that of pristine SFBC-50 (41.11 mS/cm) and 1.2 folds lower than that of Nafion-117 membrane (127.12 mS/cm). The peak power density delivered by the PEFC containing SFBC-50/PWA-30 membrane is 377.83 mW/cm2 at a load current of 864.29 mA/cm2 while operating the cell at 60 °C under 100% RH. In contrast, under identical condition, the pristine SFBC-50 membrane delivered the peak power density of 147.37 mW/cm2 at a load current of 353.52 mA/cm2, a 2.56-fold lower performance compared to composite membrane. Furthermore, composite membrane exhibited much lower H2 permeability compared to that of SFBC-50 and Nafion-117 membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Materials for fuel cell technologies. Nature 414:345–414

    Article  CAS  PubMed  Google Scholar 

  2. Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 36:4356–4362

    Article  Google Scholar 

  3. Kim AR, Vinothkannan M, Yoo DJ (2017) Artificially designed, low humidifying organic-inorganic (SFBC-50/FSiO2) composite membrane for electrolyte applications of fuel cells. Compos Part B 130:103–118

    Article  CAS  Google Scholar 

  4. Carrette L, Friedrich KA, Stimming U (2000) Fuel cells: principles, types, fuels, and applications. Chem Phys Chem 1:162–193

    Article  CAS  PubMed  Google Scholar 

  5. Wang CY (2004) Fundamental models for fuel cell engineering. Chem Rev 104:4727–4766

    Article  CAS  PubMed  Google Scholar 

  6. Sacca A, Carbone A, Passalacqua E, Epifanio AD, Licoccia S, Traversa E, Sala E, Traini F, Ornelas F (2005) Nafion–TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). J Power Sour 152:16–21

    Article  CAS  Google Scholar 

  7. Sacca A, Gatto I, Carbone A, Pedicini R, Passalacqua E (2006) ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J Power Sour 163:47–51

    Article  CAS  Google Scholar 

  8. Adjemian KT, Dominey R, Krishnan L, Ota H, Majsztrik P, Zhang T, Mann J, Kirby B, Gatto L, Simpson MV, Leahy J, Srinivasan S, Benziger JB, Bocarsly AB (2006) Function and characterization of metal oxide–Nafion composite membranes for elevated-temperature H2/O2 PEM fuel cells. Chem Mater 18:2238–2248

    Article  CAS  Google Scholar 

  9. Barique MA, Wu L, Takimoto N, Kidena K, Ohira A (2009) Effect of water on the changes in morphology and proton conductivity for the highly crystalline hydrocarbon polymer electrolyte membrane for fuel cells. J Phys Chem B 113:15921–15927

    Article  CAS  PubMed  Google Scholar 

  10. Tripathi BP, Shahi VK (2009) 3-[[3-(Triethoxysilyl)propyl]amino]propane-1-sulfonic acid-poly(vinyl alcohol) cross-linked zwitterionic polymer electrolyte membranes for direct methanol fuel cell applications. ACS Appl Mater Interfaces 1:1002–1012

    Article  CAS  PubMed  Google Scholar 

  11. Yoshimura K, Iwasaki K (2009) Aromatic polymer with pendant perfluoroalkyl sulfonic acid for fuel cell applications. Macromolecules 42:9302–9306

    Article  CAS  Google Scholar 

  12. Takamuku S, Jannasch P (2012) Multiblock copolymers containing highly sulfonated poly(arylene sulfone) blocks for proton conducting electrolyte membranes. Macromolecules 45:6538–6546

    Article  CAS  Google Scholar 

  13. Jiang Z, Zhao X, Manthiram A (2013) Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. Int J Hydrog Energy 38:5875–5884

    Article  CAS  Google Scholar 

  14. Miyahara T, Hayano T, Matsuno S, Watanabe M, Miyatake K (2012) Sulfonated polybenzophenone/poly(arylene ether) block copolymer membranes for fuel cell applications. ACS Appl Mater Interfaces 4:2881–2884

    Article  CAS  PubMed  Google Scholar 

  15. Kim AR, Vinothkannan M, Yoo DJ (2017) Sulfonated-fluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC). Int J Hydrog Energy 42:4349–4365

    Article  CAS  Google Scholar 

  16. Heo Y, Im H, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly(ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425:11–22

    Article  CAS  Google Scholar 

  17. Vinothkannan M, Kim AR, Nahm KS, Yoo DJ (2016) Ternary hybrid (SPEEK/SPVdF-HFP/GO) based membrane electrolyte for the applications of fuel cells: profile of improved mechanical strength, thermal stability and proton conductivity. RSC Adv 6:108851–108863

    Article  CAS  Google Scholar 

  18. Baker AM, Wang L, Johnson WB, Prasad AK, Advani SG (2014) Nafion membranes reinforced with ceria-coated multiwall carbon nanotubes for improved mechanical and chemical durability in polymer electrolyte membrane fuel cells. J Phys Chem C 118:26796–26802

    Article  CAS  Google Scholar 

  19. Bagheri A, Javanbakht M, Beydaghi H, Salarizadeh P, Shabaniki A, Amoli HS (2016) Sulfonated poly(ether ether ketone) and sulfonated polyvinylidene fluoride-co-hexafluoropropylene based blend proton exchange membranes for direct methanol fuel cell applications. RSC Adv 6:39500–39510

    Article  CAS  Google Scholar 

  20. Pandey RP, Das AK, Shahi VK (2015) 2-Acrylamido-2-methyl-1-propanesulfonic acid grafted poly(vinylidene fluoride-co-hexafluoropropylene)-based acid-/oxidative-resistant cation exchange for membrane electrolysis. ACS Appl Mater Interfaces 7:28524–28533

    Article  CAS  PubMed  Google Scholar 

  21. Mohanty AK, Mistri EA, Banerjee S, Komber H, Voit B (2013) Highly fluorinated sulfonated poly(arylene ether sulfone) copolymers: synthesis and evaluation of proton exchange membrane properties. Ind Eng Chem Res 52:2772–2783

    Article  CAS  Google Scholar 

  22. Wiles KB, Diego CM, Abajo J, McGrath JE (2007) Directly copolymerized partially fluorinated disulfonated poly(arylene ether sulfone) random copolymers for PEM fuel cell systems: synthesis, fabrication and characterization of membranes and membrane–electrode assemblies for fuel cell applications. J Membr Sci 294:22–29

    Article  CAS  Google Scholar 

  23. Chen Y, Guo R, Lee CH, Lee M, McGrath JE (2012) Partly fluorinated poly(arylene ether ketone sulfone) hydrophilic-hydrophobic multiblock copolymers for fuel cell membranes. Int J Hydrog Energy 37:6132–6139

    Article  CAS  Google Scholar 

  24. Zarrin H, Higgins D, Jun Y, Chen Z, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115:20774–20781

    Article  CAS  Google Scholar 

  25. Tricoli V, Nannetti F (2003) Zeolite–nafion composites as ion conducting membrane materials. Electrochim Acta 48:2625–2633

    Article  CAS  Google Scholar 

  26. Chalkova E, Wang C, Komarneni S, Lee JK, Fedkin MV, Lvov SN (2009) Composite proton conductive membranes for elevated temperature and reduced relative humidity PEMFC. ECS Transections 25:1141–1150

    Article  CAS  Google Scholar 

  27. Jun Y, Mu P, Runzhang Y (2007) Nafon/silicon oxide composite membrane for high temperature proton exchange membrane fuel cell. J Univ Technol Mater Sci Ed 22:478–481

    Article  CAS  Google Scholar 

  28. Li Z, Yue X, He G, Li Z, Yin Y, Gang M, Wu H, Jiang Z (2015) Enhanced water retention and low-humidity proton conductivity of sulfonated poly(ether ether ketone) hybrid membrane by incorporating ellipsoidal microcapsules. Int J Hydrog Energy 40:8398–8406

    Article  CAS  Google Scholar 

  29. Kalappa P, Lee JH (2007) Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polym Int 56:371–375

    Article  CAS  Google Scholar 

  30. Lee KH, Chu JY, Kim AR, Nahm KS, Kim CJ, Yoo DJ (2013) Densely sulfonated block copolymer composite membranes containing phosphotungstic acid for fuel cell membranes. J Membr Sci 434:35–43

    Article  CAS  Google Scholar 

  31. Lu JL, Fang QH, Li SL, Jiang SP (2013) A novel phosphotungstic acid impregnated meso-nafion multilayer membrane for proton exchange membrane fuel cells. J Membr Sci 427:101–107

    Article  CAS  Google Scholar 

  32. Zhou Y, Yang J, Su H, Zeng J, Jiang SP, Goddard WA (2014) Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells. J Am Chem Soc 136:4954–4964

    Article  CAS  PubMed  Google Scholar 

  33. Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641

    Article  CAS  Google Scholar 

  34. Sahu AK, Ketpang K, Shanmugam S, Kwon O, Lee S, Kim H (2016) Sulfonated graphene–nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity. J Phys Chem C 120:15855–15866

    Article  CAS  Google Scholar 

  35. Gahlot S, Sharma PP, Kulshrestha V, Jha PK (2014) SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application. ACS Appl Mater Interfaces 6:5595–5601

    Article  CAS  PubMed  Google Scholar 

  36. Gahlot S, Kulshrestha V (2015) Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM. ACS Appl Mater Interfaces 7:264–272

    Article  CAS  PubMed  Google Scholar 

  37. Parthiban V, Akula S, Peera SG, Islam N, Sahu AK (2016) Proton conducting nafion-sulfonated graphene hybrid membranes for direct methanol fuel cells with reduced methanol crossover. Energy Fuels 30:725–734

    Article  CAS  Google Scholar 

  38. Vinothkannan M, Kannan R, Kim AR, Gnana Kumar G, Nahm KS, Yoo DJ (2016) Facile enhancement in proton conductivity of sulfonated poly(ether ether ketone) using functionalized graphene oxide—synthesis, characterization, and application towards proton exchange membrane fuel cells. Colloid Polym Sci 294:1197–1206

    Article  CAS  Google Scholar 

  39. Zhao L, Li Y, Zhang H, Wu W, Liu J, Wang J (2015) Constructing proton-conductive highways within an ionomer membrane by embedding sulfonated polymer brush modified graphene oxide. J Power Sour 286:445–457

    Article  CAS  Google Scholar 

  40. Xu X, Wang H, Lu S, Peng S, Xiang Y (2016) A phosphotungstic acid self-anchored hybrid proton exchange membrane for direct methanol fuel cells. RSC Adv 6:43049–43055

    Article  CAS  Google Scholar 

  41. Xu L, Han H, Liu M, Xu J, Ni H, Zhang H, Xu D, Wang Z (2015) Phosphotungstic acid embedded sulfonated poly(arylene ether ketone sulfone) copolymers with amino groups for proton exchange membranes. RSC Adv 5:83320–83330

    Article  CAS  Google Scholar 

  42. Neelakandan S, Jacob KN, Kanagaraj P, Sabarathinam RM, Muthumeenal A, Nagendran A (2016) Effect of sulfonated graphene oxide on the performance enhancement of acid–base composite membranes for direct methanol fuel cells. RSC Adv 6:51599–51608

    Article  CAS  Google Scholar 

  43. Oh K, Ketpang K, Kim H, Shanmugam S (2016) Synthesis of sulfonated poly(arylene ether ketone) block copolymers for proton exchange membrane fuel cells. J Membr Sci 507:135–142

    Article  CAS  Google Scholar 

  44. Jung MS, Kim TH, Yoon YJ, Kang CG, Yu DM, Lee JY, Kim HJ, Hong YT (2014) Sulfonated poly(arylene sulfone) multiblock copolymers for proton exchange membrane fuel cells. J Membr Sci 459:72–85

    Article  CAS  Google Scholar 

  45. Badami AS, Lane O, Lee HS, Roy A, McGrath JE (2009) Fundamental investigations of the effect of the linkage group on the behavior of hydrophilic–hydrophobic poly(arylene ether sulfone) multiblock copolymers for proton exchange membrane fuel cells. J Membr Sci 333:1–11

    Article  CAS  Google Scholar 

  46. Chu JY, Kim AR, Nahm KS, Lee NK, Yoo DJ (2013) Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units. Int J Hydrog Energy 38:6268–6274

    Article  CAS  Google Scholar 

  47. Vinothkannan M, Kim AR, Gnana kumar G, Yoon J-M, Yoo DJ (2017) Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells. RSC Adv 7:39034–39048

    Article  CAS  Google Scholar 

  48. Jiang Z, Zhao X, Fu Y, Manthiram A (2012) Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. J Mater Chem 22:24862–24869

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work (Grants No. S2136752) was supported by Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ae Rhan Kim or Dong Jin Yoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, A.R., Vinothkannan, M., Kim, J.S. et al. Proton-conducting phosphotungstic acid/sulfonated fluorinated block copolymer composite membrane for polymer electrolyte fuel cells with reduced hydrogen permeability. Polym. Bull. 75, 2779–2804 (2018). https://doi.org/10.1007/s00289-017-2180-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2180-2

Keywords

Navigation