Skip to main content

Advertisement

Log in

Radiopaque dental adhesive with addition of niobium pentoxide nanoparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Radiopacity is an important property of dental adhesives, because it allows the adhesive resin to be in contrast with the tooth structure and other restorative materials. This study aimed to develop a radiopaque experimental adhesive resin through the addition of niobium pentoxide (Nb2O5) particles. The effects of adding different concentrations of Nb2O5 nanoparticles synthesized by microwave-assisted hydrothermal synthesis (MHS) were compared to the commercial Nb2O5 microparticles. The experimental adhesive resin was formulated by mixing bisphenol A glycidyl methacrylate (Bis-GMA), 2-hydroxyethyl methacrylate (HEMA), camphorquinone (CQ) and ethyl 4-(dimethylamino)benzoate (EDAB). Experimental adhesive resins were evaluated by the radiopacity, degree of conversion, Knoop microhardness, translucency parameter, depth of cure, viscosity, and sedimentation rate. Synthesized Nb2O5 showed hexagonal structure and nanoneedles aggregates in form of nanoflowers. The incorporation of Nb2O5 nanoparticles into the dental adhesive resin showed high dispersion stability and improved the radiopaque properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Van Landuyt KL, Snauwaert J, De Munck J et al (2007) Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28:3757–3785. doi:10.1016/j.biomaterials.2007.04.044

    Article  CAS  PubMed  Google Scholar 

  2. Leitune VCB, Collares FM, Trommer RM et al (2013) The addition of nanostructured hydroxyapatite to an experimental adhesive resin. J Dent 41:321–327. doi:10.1016/j.jdent.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  3. Furtos G, Baldea B, Silaghi-Dumitrescu L et al (2013) Influence of inorganic filler content on the radiopacity of dental resin cements. Dent Mater J 31:266–272. doi:10.4012/dmj.2011-225

    Article  CAS  Google Scholar 

  4. Schwartz RS, Robbins JW (2004) Post placement and restoration of endodontically treated teeth: a literature review. J Endod 30:289–301. doi:10.1097/00004770-200405000-00001

    Article  PubMed  Google Scholar 

  5. Schulz H, Schimmoeller B, Pratsinis SE et al (2008) Radiopaque dental adhesives: dispersion of flame-made Ta2O5/SiO2 nanoparticles in methacrylic matrices. J Dent 36:579–587. doi:10.1016/j.jdent.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  6. Moszner N, Salz U (2001) New developments of polymeric dental composites. Prog Polym Sci 26:535–576. doi:10.1016/S0079-6700(01)00005-3

    Article  CAS  Google Scholar 

  7. Collares FM, Klein M, Santos PD et al (2013) Influence of radiopaque fillers on physicochemical properties of a model epoxy resin-based root canal sealer. J Appl Oral Sci 21:533–539. doi:10.1590/1679-775720130334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Collares FM, Ogliari FA, Lima GS et al (2010) Ytterbium trifluoride as a radiopaque agent for dental cements. Int Endod J 43:792–797. doi:10.1111/j.1365-2591.2010.01746.x

    Article  CAS  PubMed  Google Scholar 

  9. Collares FM, Leitune VCB, Rostirolla FV et al (2012) Nanostructured hydroxyapatite as filler for methacrylate-based root canal sealers. Int Endod J 45:63–67. doi:10.1111/j.1365-2591.2011.01948.x

    Article  CAS  PubMed  Google Scholar 

  10. Leitune VCB, Takimi A, Collares FM et al (2013) Niobium pentoxide as a new filler for methacrylate-based root canal sealers. Int Endod J 46:205–210. doi:10.1111/j.1365-2591.2012.02107.x

    Article  CAS  PubMed  Google Scholar 

  11. Leitune VCB, Collares FM, Takimi A et al (2013) Niobium pentoxide as a novel filler for dental adhesive resin. J Dent 41:106–113. doi:10.1111/j.1365-2591.2012.02107.x

    Article  CAS  PubMed  Google Scholar 

  12. Ko EI, Weissman JG (1990) Structures of niobium pentoxide and their implications on chemical behavior. Catal Today 8:27–36. doi:10.1016/0920-5861(90)87005-N

    Article  CAS  Google Scholar 

  13. Karlinsey RL, Hara AT, Yi K, Duhn CW (2006) Bioactivity of novel self-assembled crystalline Nb2O5 microstructures in simulated and human salivas. Biomed Mater 1:16–23. doi:10.1088/1748-6041/1/1/003

    Article  CAS  PubMed  Google Scholar 

  14. Velten D, Eisenbarth E, Schanne N, Breme J (2004) Biocompatible Nb2O5 thin films prepared by means of the sol-gel process. J Mater Sci Mater Med 15:457–461. doi:10.1023/B:JMSM.0000021120.86985.f7

    Article  CAS  PubMed  Google Scholar 

  15. Bergschmidt P, Bader R, Finze S et al (2011) Comparative study of clinical and radiological outcomes of unconstrained bicondylar total knee endoprostheses with anti-allergic coating. Open Orthop J 5:354–360. doi:10.2174/1874325001105010354

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ding GJ, Zhu YJ, Qi C et al (2015) Porous microspheres of amorphous calcium phosphate: block copolymer templated microwave-assisted hydrothermal synthesis and application in drug delivery. J Colloid Interface Sci 443:72–79. doi:10.1016/j.jcis.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  17. Zhu YJ, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555. doi:10.1021/cr400366s

    Article  CAS  PubMed  Google Scholar 

  18. Leite ER, Vila C, Bettini J, Longo E (2006) Synthesis of niobia nanocrystals with controlled morphology. J Phys Chem B 110:18088–18090. doi:10.1021/jp0642544

    Article  CAS  PubMed  Google Scholar 

  19. Chen M-H (2010) Update on dental nanocomposites. J Dent Res 89:549–560. doi:10.1177/0022034510363765

    Article  CAS  PubMed  Google Scholar 

  20. de Keijser TH, Langford JI, Mittemeijer EJ, Vogels ABP (1982) Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J Appl Crystallogr 15:308–314. doi:10.1107/S0021889882012035

    Article  Google Scholar 

  21. Reis LO, Kaizer MR, Ogliari FA et al (2014) Investigation on the use of triphenyl bismuth as radiopacifier for (di)methacrylate dental adhesives. Int J Adhes Adhes 48:80–84. doi:10.1016/j.ijadhadh.2013.09.007

    Article  CAS  Google Scholar 

  22. Madruga FC, Ogliari FA, Ramos TS et al (2013) Calcium hydroxide, pH-neutralization and formulation of model self-adhesive resin cements. Dent Mater 29:413–418. doi:10.1016/j.dental.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  23. Melinte V, Buruiana T, Chibac A et al (2016) New acid BisGMA analogs for dental adhesive applications with antimicrobial activity. Dent Mater 32:e314–e326. doi:10.1016/j.dental.2016.09.026

    Article  CAS  PubMed  Google Scholar 

  24. Atai M, Solhi L, Nodehi A et al (2009) PMMA-grafted nanoclay as novel filler for dental adhesives. Dent Mater 25:339–347. doi:10.1016/j.dental.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  25. Le Viet A, Reddy MV, Jose R et al (2011) Electrochemical properties of bare and Ta-substituted Nb2O5 nanostructures. Electrochim Acta 56:1518–1528. doi:10.1016/j.electacta.2010.10.047

    Article  CAS  Google Scholar 

  26. Shao R, Cao Z, Xiao Y et al (2014) Enhancing photocatalytic activity by tuning the ratio of hexagonal and orthorhombic phase Nb2O5 hollow fibers. RSC Adv 4:26447–26451. doi:10.1039/c4ra02038c

    Article  CAS  Google Scholar 

  27. He J, Hu Y, Wang Z et al (2014) Hydrothermal growth and optical properties of Nb2O5 nanorod arrays. J Mater Chem C 2:8185–8190. doi:10.1039/C4TC01581A

    Article  CAS  Google Scholar 

  28. Lopes OF, Paris EC, Ribeiro C (2014) Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: a mechanistic study. Appl Catal B Environ 144:800–808. doi:10.1016/j.apcatb.2013.08.031

    Article  CAS  Google Scholar 

  29. Wang X, Chen G, Zhou C et al (2012) N-doped Nb2O5 sensitized by carbon nitride polymer—synthesis and high photocatalytic activity under visible light. Eur J Inorg Chem. doi:10.1002/ejic.201101285

    Article  Google Scholar 

  30. Weissman JG, Ko EI, Wynblatt P, Howe JM (1989) High-resolution electron microscopy and image simulation of TT-, T-, and H-niobia and model silica-supported niobium surface oxides. Chem Mater 1:187–193. doi:10.1021/cm00002a005

    Article  CAS  Google Scholar 

  31. Brayner R, Bozon-Verduraz F (2003) Niobium pentoxide prepared by soft chemical routes: morphology, structure, defects and quantum size effect. Phys Chem Chem Phys 5:1457–1466. doi:10.1039/b210055j

    Article  CAS  Google Scholar 

  32. Jehng JM, Wachs IE (1991) Structural chemistry and Raman spectra of niobium oxides. Chem Mater 3:100–107. doi:10.1021/cm00013a025

    Article  CAS  Google Scholar 

  33. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803. doi:10.1016/j.pmatsci.2011.08.003

    Article  CAS  Google Scholar 

  34. Cruz AD, Esteves RG, Poiate IAVP et al (2014) Influence of radiopacity of dental composites on the diagnosis of secondary caries: the correlation between objective and subjective analyses. Oper Dent 39:90–97. doi:10.2341/12-377-L

    Article  CAS  PubMed  Google Scholar 

  35. Goshima T, Goshima Y (1990) Radiographic detection of recurrent carious lesions associated with composite restorations. Oral Surg Oral Med Oral Pathol 70:236–239

    Article  CAS  PubMed  Google Scholar 

  36. Aoyagi Y, Takahashi H, Iwasaki N et al (2005) Radiopacity of experimental composite resins containing radiopaque materials. Dent Mater J 24:315–320

    Article  CAS  PubMed  Google Scholar 

  37. Shortall AC, Palin WM, Burtscher P (2008) Refractive index mismatch and monomer reactivity influence composite curing depth. J Dent Res 87:84–88. doi:10.1177/154405910808700115

    Article  CAS  PubMed  Google Scholar 

  38. Tien C-L (2010) Effect of sputtering anisotropic ejection on the optical properties and residual stress of Nb2O5 thin films. Appl Surf Sci 257:481–486

    Article  CAS  Google Scholar 

  39. Rodrigues SA, Scherrer SS, Ferracane JL, Della Bona A (2008) Microstructural characterization and fracture behavior of a microhybrid and a nanofill composite. Dent Mater 24:1281–1288. doi:10.1016/j.dental.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Swartz ML, Phillips RW et al (1985) Effect of filler content and size on properties of composites. J Dent Res 64:1396–1401. doi:10.1177/00220345850640121501

    Article  CAS  PubMed  Google Scholar 

  41. Krumova M, Klingshirn C, Haupert F, Friedrich K (2001) Microhardness studies on functionally graded polymer composites. Compos Sci Technol 61:557–563. doi:10.1016/S0266-3538(00)00228-1

    Article  CAS  Google Scholar 

  42. Say EC, Nakajima M, Senawongse P et al (2006) Microtensile bond strength of a filled vs unfilled adhesive to dentin using self-etch and total-etch technique. J Dent 34:283–291. doi:10.1016/j.jdent.2005.07.003

    Article  CAS  Google Scholar 

  43. Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN (2010) Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater 26:471–482. doi:10.1016/j.dental.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  44. Lee JH, Um CM, Lee IB (2006) Rheological properties of resin composites according to variations in monomer and filler composition. Dent Mater 22:515–526. doi:10.1016/j.dental.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  45. Sadat-Shojai M (2009) Preparation of hydroxyapatite nanoparticles: comparison between hydrothermal and solvo-treatment processes and colloidal stability of produced nanoparticles in a dilute experimental dental adhesive. J Iran Chem Soc 6:386–392. doi:10.1007/BF03245848

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support of CAPES, CNPq, FAPERGS, CEME-SUL, ClinDoc, and Companhia Brasileira de Metalurgia e Mineração (CBMM) by the ammonium niobium oxalate and Nb2O5 microparticles donations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrício A. Ogliari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marins, N.H., Meereis, C.T.W., Silva, R.M. et al. Radiopaque dental adhesive with addition of niobium pentoxide nanoparticles. Polym. Bull. 75, 2301–2314 (2018). https://doi.org/10.1007/s00289-017-2150-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2150-8

Keywords

Navigation