Skip to main content
Log in

Immobilization of horseradish peroxidase on electrospun poly(vinyl alcohol)–polyacrylamide blend nanofiber membrane and its use in the conversion of phenol

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Electrospun nanofibers, with their porous structures, high surface-to-volume ratio, and good mechanical properties, are used as a support material for enzyme immobilization. In this study, the poly(vinyl alcohol) and polyacrylamide bicomponent (PVA–PAAm) nanofibers were fabricated via the electrospinning method. Synthesized PAAm was characterized with size exclusion chromatography (SEC). Nanofibers were characterized by fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscope (SEM). DSC and TGA analyses showed that the nanofibers were more durable than PVA and PAAm polymers. SEM images demonstrated that all nanofibers possessed uniform and smooth structures (average diameter about 300 nm). FTIR results have shown that PAAm successfully participates in nanofiber structure. The produced nanofibers were used as support material for covalent immobilization of horseradish peroxidase (HRP). The optimum temperature for free HRP was 45 °C, whereas it was 50 °C for the immobilized enzyme. The immobilized HRP showed better storage and thermal stability than free HRP. The kinetic parameters (K m and V max) were found to be 2.42 mM and 0.027 U for the immobilized HRP and 1.86 mM and 0.079 U for the free HRP, respectively. The immobilized enzyme could be used effectively for 25 cycles with 54% retention of the activity. The immobilized HRP was also used for the conversion of phenol. Phenol removal was found to be about 29.68% at 180 min in real wastewater. The novel PVA–PAAm nanofibrous material was successfully used as a support material for covalent immobilization of HRP. Immobilized enzymes such as oxido-reductases onto the PVA–PAAm bicomponent nanofiber could be recommended in the treatment of organic pollutants in industrial effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lopes GR, Pinto DCGA, Silva AMS (2014) Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Adv 4:37244. doi:10.1039/C4RA06094F

    Article  CAS  Google Scholar 

  2. Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259. doi:10.1016/j.phytochem.2003.10.022

    Article  CAS  Google Scholar 

  3. Cheng Z, Fu F, Pang Y et al (2014) Removal of phenol by acid-washed zero-valent aluminium in the presence of H2O2. Chem Eng J 260:284–290. doi:10.1016/j.cej.2014.09.012

    Article  Google Scholar 

  4. Adam F, Andas J, Rahman IA (2010) A study on the oxidation of phenol by heterogeneous iron silica catalyst. Chem Eng J 165:658–667. doi:10.1016/j.cej.2010.09.054

    Article  CAS  Google Scholar 

  5. Huang XJ, Chen PC, Huang F et al (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym 70:95–100. doi:10.1016/j.molcatb.2011.02.010

    Article  CAS  Google Scholar 

  6. Rodrigues RC, Ortiz C, Berenguer-Murcia Á et al (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307. doi:10.1039/c2cs35231a

    Article  CAS  Google Scholar 

  7. Marchis T, Cerrato G, Magnacca G et al (2012) Immobilization of soybean peroxidase on aminopropyl glass beads: structural and kinetic studies. Biochem Eng J 67:28–34. doi:10.1016/j.bej.2012.05.002

    Article  CAS  Google Scholar 

  8. Wang Y, Du J, Li Y et al (2012) A amperometric biosensor for hydrogen peroxide by adsorption of horseradish peroxidase onto single-walled carbon nanotubes. Coll Surf B Biointerfaces 90:62–67. doi:10.1016/j.colsurfb.2011.09.045

    Article  CAS  Google Scholar 

  9. Somturk B, Hancer M, Ocsoy I, Özdemir N (2015) Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Trans 44:13845–13852. doi:10.1039/C5DT01250C

    Article  CAS  Google Scholar 

  10. Jiang Y, Tang W, Gao J et al (2014) Immobilization of horseradish peroxidase in phospholipid-templated titania and its applications in phenolic compounds and dye removal. Enzym Microb Technol 55:1–6. doi:10.1016/j.enzmictec.2013.11.005

    Article  CAS  Google Scholar 

  11. Mohamed SA, Darwish AA, El-Shishtawy RM (2013) Immobilization of horseradish peroxidase on activated wool. Process Biochem 48:649–655. doi:10.1016/j.procbio.2013.03.002

    Article  CAS  Google Scholar 

  12. Kreider A, Sell S, Kowalik T et al (2014) Influence of immobilization protocol on the structure and function of surface bound proteins. Coll Surf B Biointerfaces 116:378–382. doi:10.1016/j.colsurfb.2013.07.022

    Article  CAS  Google Scholar 

  13. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511. doi:10.1016/j.biotechadv.2011.09.003

    Article  CAS  Google Scholar 

  14. Kondyurin A, Levchenko I, Han ZJ et al (2013) Hybrid graphite film-carbon nanotube platform for enzyme immobilization and protection. Carbon 65:287–295. doi:10.1016/j.carbon.2013.08.028

    Article  CAS  Google Scholar 

  15. Niu J, Xu J, Dai Y et al (2013) Immobilization of horseradish peroxidase by electrospun fibrous membranes for adsorption and degradation of pentachlorophenol in water. J Hazard Mater 246–247:119–125. doi:10.1016/j.jhazmat.2012.12.023

    Article  Google Scholar 

  16. Kermad A, Sam S, Ghellai N et al (2013) Horseradish peroxidase-modified porous silicon for phenol monitoring. Mater Sci Eng B Solid State Mater Adv Technol 178:1159–1164. doi:10.1016/j.mseb.2013.07.010

    Article  CAS  Google Scholar 

  17. Fritzen-Garcia MB, Monteiro FF, Cristofolini T et al (2013) Characterization of horseradish peroxidase immobilized on PEGylated polyurethane nanoparticles and its application for dopamine detection. Sens Actuators B Chem 182:264–272. doi:10.1016/j.snb.2013.02.107

    Article  CAS  Google Scholar 

  18. Denaday LR, Miranda MV, Torres Sánchez RM et al (2011) Development and characterization of a polyampholyte-based reactor immobilizing soybean seed coat peroxidase for analytical applications in a flow system. Biochem Eng J 58–59:57–68. doi:10.1016/j.bej.2011.08.014

    Article  Google Scholar 

  19. Torabi SF, Khajeh K, Ghasempur S et al (2007) Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: activity, stability and co-immobilization. J Biotechnol 131:111–120. doi:10.1016/j.jbiotec.2007.04.015

    Article  CAS  Google Scholar 

  20. Yu C, Wang L, Li W et al (2015) Detection of cellular H2O2 in living cells based on horseradish peroxidase at the interface of Au nanoparticles decorated graphene oxide. Sens Actuators B Chem 211:17–24. doi:10.1016/j.snb.2015.01.064

    Article  CAS  Google Scholar 

  21. Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Coll Surf A Physicochem Eng Asp 313–314:183–188. doi:10.1016/j.colsurfa.2007.04.129

    Article  Google Scholar 

  22. Beheshti H, Irani M, Hosseini L et al (2016) Removal of Cr(VI) from aqueous solutions using chitosan/MWCNT/Fe3O4 composite nanofibers-batch and column studies. Chem Eng J 284:557–564. doi:10.1016/j.cej.2015.08.158

    Article  CAS  Google Scholar 

  23. Destaye AG, Lin CK, Lee CK (2013) Glutaraldehyde vapor cross-linked nanofibrous PVA mat with in situ formed silver nanoparticles. ACS Appl Mater Interfaces 5:4745–4752. doi:10.1021/am401730x

    Article  CAS  Google Scholar 

  24. Golshaei R, Karazehir T, Ghoreishi SM et al (2017) Glucose oxidase immobilization onto Au/poly[anthranilic acid-co-3-carboxy-N-(2-thenylidene)aniline]/PVAc electrospun nanofibers. Polym Bull 74:1493–1517. doi:10.1007/s00289-016-1786-0

    Article  CAS  Google Scholar 

  25. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. doi:10.1016/j.biotechadv.2010.01.004

    Article  CAS  Google Scholar 

  26. Li C, Zhou L, Wang C et al (2015) Electrospinning of a PMA-co-PAA/FP biopolymer nanofiber: enhanced capability for immobilized horseradish peroxidase and its consequence for p-nitrophenol disposal. RSC Adv 5:41994–41998. doi:10.1039/C5RA05626H

    Article  CAS  Google Scholar 

  27. Xu R, Tang R, Liu S et al (2015) An environmentally-friendly enzyme-based nanofibrous membrane for 3,3′,5,5′-tetrabromobisphenol removal. RSC Adv 5:64091–64097. doi:10.1039/C5RA09090C

    Article  CAS  Google Scholar 

  28. Sakai S, Antoku K, Yamaguchi T, Kawakami K (2008) Development of electrospun poly(vinyl alcohol) fibers immobilizing lipase highly activated by alkyl-silicate for flow-through reactors. J Membr Sci 325:454–459. doi:10.1016/j.memsci.2008.08.008

    Article  CAS  Google Scholar 

  29. Wang Y, Hsieh YL (2008) Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes. J Membr Sci 309:73–81. doi:10.1016/j.memsci.2007.10.008

    Article  CAS  Google Scholar 

  30. Wu L, Yuan X, Sheng J (2005) Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Membr Sci 250:167–173. doi:10.1016/j.memsci.2004.10.024

    Article  CAS  Google Scholar 

  31. Moradzadegan A, Ranaei-Siadat SO, Ebrahim-Habibi A et al (2010) Immobilization of acetylcholinesterase in nanofibrous PVA/BSA membranes by electrospinning. Eng Life Sci 10:57–64. doi:10.1002/elsc.200900001

    Article  CAS  Google Scholar 

  32. Bastürk E, Demir S, Danis O, Kahraman MV (2013) Covalent immobilization of α-amylase onto thermally crosslinked electrospun PVA/PAA nanofibrous hybrid membranes. J Appl Polym Sci 127:349–355. doi:10.1002/app.37901

    Article  Google Scholar 

  33. Sano S, Kato K, Ikada Y (1993) Introduction of functional groups onto the surface of polyethylene for protein immobilization. Biomaterials 14:817–822. doi:10.1016/0142-9612(93)90003-K

    Article  CAS  Google Scholar 

  34. Temoçin Z, Yiǧitoǧlu M (2009) Studies on the activity and stability of immobilized horseradish peroxidase on poly(ethylene terephthalate) grafted acrylamide fiber. Bioprocess Biosyst Eng 32:467–474. doi:10.1007/s00449-008-0266-9

    Article  Google Scholar 

  35. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym 66:229–245. doi:10.1016/j.carbpol.2006.03.006

    Article  CAS  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  37. Halpin B, Pressey R, Jen J, Mondy N (1989) Purification and characterization of peroxidase isoenzymes from green peas (Pisum sativum). J Food Sci 54:644–649. doi:10.1111/j.1365-2621.1989.tb04672.x

    Article  CAS  Google Scholar 

  38. Hou X, Liu B, Deng X et al (2007) Covalent immobilization of glucose oxidase onto poly(styrene-co-glycidyl methacrylate) monodisperse fluorescent microspheres synthesized by dispersion polymerization. Anal Biochem 368:100–110. doi:10.1016/j.ab.2007.04.034

    Article  CAS  Google Scholar 

  39. Bhattarai N, Edmondson D, Veiseh O et al (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184. doi:10.1016/j.biomaterials.2005.03.027

    Article  CAS  Google Scholar 

  40. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548. doi:10.1016/j.msec.2007.10.088

    Article  CAS  Google Scholar 

  41. Hassan M, Reddy KR, Haque E et al (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51. doi:10.1016/j.jcis.2013.08.006

    Article  CAS  Google Scholar 

  42. Lim BC, Singu BS, Hong SE et al (2016) Synthesis and characterization nanocomposite of polyacrylamide-rGO-Ag-PEDOT/PSS hydrogels by photo polymerization method. Polym Adv Technol 27:366–373. doi:10.1002/pat.3648

    Article  CAS  Google Scholar 

  43. Jiang L, Yang T, Peng L, Dan Y (2015) Acrylamide modified poly(vinyl alcohol): crystalline and enhanced water solubility. RSC Adv 5:86598–86605. doi:10.1039/C5RA18437A

    Article  CAS  Google Scholar 

  44. Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131:1–14. doi:10.1002/app.39747

    Article  Google Scholar 

  45. Marin L, Simionescu B, Barboiu M (2012) Imino-chitosan biodynamers. Chem Commun 48:8778–8780. doi:10.1039/c2cc34337a

    Article  CAS  Google Scholar 

  46. Gilman JW, VanderHart DL, Kashiwagi T (1995) Thermal decomposition chemistry of poly(vinyl alcohol). Fire and Polymers II: Materials and Test for Hazard Prevention, ACS Symposium Series 599. http://fire.nist.gov/bfrlpubs/fire95/PDF/f95145.pdf. Accessed 11 Feb 2017

  47. Wei Q, Wang Y, Che Y et al (2017) Molecular mechanisms in compatibility and mechanical properties of polyacrylamide/polyvinyl alcohol blends. J Mech Behav Biomed Mater 65:565–573. doi:10.1016/j.jmbbm.2016.09.011

    Article  CAS  Google Scholar 

  48. Kashyap S, Pratihar SK, Behera SK (2016) Strong and ductile graphene oxide reinforced PVA nanocomposites. J Alloys Compd 684:254–260. doi:10.1016/j.jallcom.2016.05.162

    Article  CAS  Google Scholar 

  49. Shi Y, Xiong D, Liu Y et al (2016) Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Mater Sci Eng C 65:172–180. doi:10.1016/j.msec.2016.04.042

    Article  CAS  Google Scholar 

  50. Pahujani S, Kanwar SS, Chauhan G, Gupta R (2008) Glutaraldehyde activation of polymer Nylon-6 for lipase immobilization: enzyme characteristics and stability. Bioresour Technol 99:2566–2570. doi:10.1016/j.biortech.2007.04.042

    Article  CAS  Google Scholar 

  51. Mendes AA, De Castro HF, Andrade GSS et al (2013) Preparation and application of epoxy-chitosan/alginate support in the immobilization of microbial lipases by covalent attachment. React Funct Polym 73:160–167. doi:10.1016/j.reactfunctpolym.2012.08.023

    Article  CAS  Google Scholar 

  52. Nelson D, Cox M (2008) Lehninger principles of biochemistry. W. H. Freeman and Company, New York

    Google Scholar 

  53. Şahin F, Demirel G, Tümtürk H (2005) A novel matrix for the immobilization of acetylcholinesterase. Int J Biol Macromol 37:148–153. doi:10.1016/j.ijbiomac.2005.10.003

    Article  Google Scholar 

  54. Prodanovic O, Prokopijevic M, Spasojevic D et al (2012) Improved covalent immobilization of horseradish peroxidase on macroporous glycidyl methacrylate-based copolymers. Appl Biochem Biotechnol 168:1288–1301. doi:10.1007/s12010-012-9857-7

    Article  CAS  Google Scholar 

  55. Zhai R, Zhang B, Wan Y et al (2013) Chitosan–halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J 214:304–309. doi:10.1016/j.cej.2012.10.073

    Article  CAS  Google Scholar 

  56. Chang Q, Tang H (2014) Immobilization of horseradish peroxidase on NH2-modified magnetic Fe3O4/SiO2 particles and its application in removal of 2,4-dichlorophenol. Molecules 19:15768–15782. doi:10.3390/molecules191015768

    Article  Google Scholar 

  57. Mateo C, Palomo JM, Fernandez-Lorente G et al (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463. doi:10.1016/j.enzmictec.2007.01.018

    Article  CAS  Google Scholar 

  58. Lu Y-M, Yang Q-Y, Wang L-M et al (2017) Enhanced activity of immobilized horseradish peroxidase by carbon nanospheres for phenols removal. Clean Soil Air Water 45:1600077. doi:10.1002/clen.201600077

    Article  Google Scholar 

  59. Xu R, Chi C, Li F, Zhang B (2013) Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A. Bioresour Technol 149:111–116. doi:10.1016/j.biortech.2013.09.030

    Article  CAS  Google Scholar 

  60. Sathishkumar P, Chae JC, Unnithan AR et al (2012) Laccase-poly(lactic-co-glycolic acid) (PLGA) nanofiber: highly stable, reusable, and efficacious for the transformation of diclofenac. Enzyme Microb Technol 51:113–118. doi:10.1016/j.enzmictec.2012.05.001

    Article  CAS  Google Scholar 

  61. Kikani BA, Pandey S, Singh SP (2013) Immobilization of the α-amylase of Bacillus amyloliquefaciens TSWK1-1 for the improved biocatalytic properties and solvent tolerance. Bioprocess Biosyst Eng 36:567–577. doi:10.1007/s00449-012-0812-3

    Article  CAS  Google Scholar 

  62. Liu Y, Zeng Z, Zeng G et al (2012) Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour Technol 115:21–26. doi:10.1016/j.biortech.2011.11.015

    Article  CAS  Google Scholar 

  63. Malani RS, Khanna S, Moholkar VS (2013) Sonoenzymatic decolourization of an azo dye employing immobilized horse radish peroxidase (HRP): a mechanistic study. J Hazard Mater 256–257:90–97. doi:10.1016/j.jhazmat.2013.04.023

    Article  Google Scholar 

  64. Cao X, Yu J, Zhang Z, Liu S (2012) Bioactivity of horseradish peroxidase entrapped in silica nanospheres. Biosens Bioelectron 35:101–107. doi:10.1016/j.bios.2012.02.027

    Article  CAS  Google Scholar 

  65. Fazel R, Torabi SF, Naseri-Nosar P et al (2016) Electrospun polyvinyl alcohol/bovine serum albumin biocomposite membranes for horseradish peroxidase immobilization. Enzym Microb Technol 93–94:1–10. doi:10.1016/j.enzmictec.2016.07.002

    Article  Google Scholar 

  66. Talekar S, Ghodake V, Ghotage T et al (2012) Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. Bioresour Technol 123:542–547. doi:10.1016/j.biortech.2012.07.044

    Article  CAS  Google Scholar 

  67. Fernandes KF, Lima CS, Lopes FM, Collins CH (2004) Properties of horseradish peroxidase immobilised onto polyaniline. Process Biochem 39:957–962. doi:10.1016/S0032-9592(03)00211-5

    Article  CAS  Google Scholar 

  68. Park BW, Ko KA, Yoon DY, Kim DS (2012) Enzyme activity assay for horseradish peroxidase encapsulated in peptide nanotubes. Enzym Microb Technol 51:81–85. doi:10.1016/j.enzmictec.2012.04.004

    Article  CAS  Google Scholar 

  69. Zhang F, Zheng B, Zhang J et al (2010) Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J Phys Chem C 114:8469–8473. doi:10.1021/jp101073b

    Article  CAS  Google Scholar 

  70. Dabrowski A, Podkocielny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58:1049–1070. doi:10.1016/j.chemosphere.2004.09.067

    Article  CAS  Google Scholar 

  71. An AK, Guo J, Lee EJ et al (2017) PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J Membr Sci 525:57–67. doi:10.1016/j.memsci.2016.10.028

    Article  CAS  Google Scholar 

  72. Showkat AM, Zhang YP, Min SK et al (2007) Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesoporous silica. Bull Korean Chem Soc 28:1985–1992. doi:10.5012/bkcs.2007.28.11.1985

    Article  CAS  Google Scholar 

  73. Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A Gen 489:1–16. doi:10.1016/j.apcata.2014.10.001

    Article  CAS  Google Scholar 

  74. Reddy KR, Karthik KV, Prasad SBB et al (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174. doi:10.1016/j.poly.2016.08.029

    Article  CAS  Google Scholar 

  75. Alemzadeh I, Nejati S (2009) Phenols removal by immobilized horseradish peroxidase. J Hazard Mater 166:1082–1086. doi:10.1016/j.jhazmat.2008.12.026

    Article  CAS  Google Scholar 

  76. Jamal F, Singh S, Qidwai T et al (2013) Catalytic activity of soluble versus immobilized cauliflower (Brassica oleracea) bud peroxidase-concanavalin A complex and its application in dye color removal. Biocatal Agric Biotechnol 2:311–321. doi:10.1016/j.bcab.2013.05.005

    Google Scholar 

  77. Ai J, Zhang W, Liao G et al (2016) Immobilization of horseradish peroxidase enzymes on hydrous-titanium and application for phenol removal. RSC Adv 6:38117–38123. doi:10.1039/C6RA02397E

    Article  CAS  Google Scholar 

  78. Pramparo L, Stüber F, Font J et al (2010) Immobilisation of horseradish peroxidase on Eupergit®C for the enzymatic elimination of phenol. J Hazard Mater 177:990–1000. doi:10.1016/j.jhazmat.2010.01.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Research Foundation of Kırıkkale University (2009/44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat İnal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temoçin, Z., İnal, M., Gökgöz, M. et al. Immobilization of horseradish peroxidase on electrospun poly(vinyl alcohol)–polyacrylamide blend nanofiber membrane and its use in the conversion of phenol. Polym. Bull. 75, 1843–1865 (2018). https://doi.org/10.1007/s00289-017-2129-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2129-5

Keywords

Navigation