Skip to main content
Log in

Host recycled poly(ethylene terephthalate) and guest PVA-grafted ZnO nanoparticles: prepared nanocomposites characterization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This article elaborates on the poly(ethylene terephthalate) (PET) recycling by dissolution–reprecipitation method and then fabrication and examination of its nanocomposites (NC)s with poly(vinyl alcohol) grafted ZnO nanoparticles (NP)s which was fabricated through blending procedure and solution casting process. Functionalization of inorganic NPs was performed via ultrasonic irradiation to improve compatibility with PET as a matrix. In this study, the guest ZnO NPs, alerting from 1, 3 to 5 wt%, were embedded into the PET as a host polymer and the resulting materials as modified ZnO NPs and the PET@ZnO-PVA NCs were examined using Fourier transform infrared, X-ray diffraction, UV–Vis spectroscopy, thermogravimetric analysis (TGA), transmission electron microscopy, and field emission scanning electron microscopy (FE-SEM). Morphological investigation showed that metal oxide particles in the nanoscale size were separated individually and uniformly dispersed. Representative FE-SEM images of ultrasonicated PET in ethanol, along with an image of ultrasonicated PET in DMAc were carried out to investigate the solvent effect. Calculated char yields from TGA data and its related LOI values showed that the obtained NCs could be considered as self-extinguishing compounds. Due to UV–Vis diagrams, PET@ZnO-PVA NCs had superior absorption compared to the recycled PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Khorasani-Motlagh M, Noroozifar M, Shahroosvand H (2010) A new reduction route for the synthesis of nanoscale metals and metal oxides with ascorbic acid at low temperature. J Iran Chem Soc 7:S113–S122

    Article  CAS  Google Scholar 

  2. Paul D, Robeson L (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  3. Zhaohui J, Zhao J, Zhiying L, Jing W, Changfa X, Jian J (2014) A comparative study of rheological behavior of PET and PET/carbon black composite masterbatch. Polym Bull 71:3197–3208

    Article  Google Scholar 

  4. Vakili M, Fard MH (2010) Chemical recycling of poly ethylene terephthalate wastes. World Appl Sci J 8:839–846

    CAS  Google Scholar 

  5. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond B Biol Sci 364:2115–2126

    Article  CAS  Google Scholar 

  6. Ptiček Siročić A, Fijačko A, Hrnjak-Murgić Z (2013) Chemical recycling of postconsumer poly(ethylene-terephthalate) bottles–depolymerization study. Chem Biochem Eng Q 27:65–71

    Google Scholar 

  7. Siddique R, Khatib J, Kaur I (2008) Use of recycled plastic in concrete: a review. Waste Manag 28:1835–1852

    Article  CAS  Google Scholar 

  8. Zhuo C, Levendis YA (2014) Upcycling waste plastics into carbon nanomaterials: a review. J Appl Polym Sci. doi:10.1002/APP.39931

    Google Scholar 

  9. Lee JH, Lim KS, Hahm WG, Kim SH (2013) Properties of recycled and virgin poly(ethylene terephthalate) blend fibers. J Appl Polym Sci 128:1250–1256

    Article  CAS  Google Scholar 

  10. Goje A (2005) Recycling of waste poly(ethylene terephthalate) with naphthalene and neutral water. Polym Plast Technol Eng 44:1631–1643

    Article  CAS  Google Scholar 

  11. Misra E, Basavarajaiah S, Kumar KR, Ravi P (2000) Effect of recycling on the properties of poly(ethylene terephthalate) films. Polym Int 49:1636–1640

    Article  CAS  Google Scholar 

  12. Inuwa I, Hassan A, Shamsudin S (2014) Thermal properties, structure and morphology of graphene reinforced polyethylene terephthalate/polypropylene nano composites. Malays J Anal Sci 18:466–477

    Google Scholar 

  13. Borjanović V, Bistričić L, Pucić I, Mikac L, Slunjski R, Jakšić M, McGuire G, Tomas Stanković A, Shenderova O (2016) Proton-radiation resistance of poly(ethylene terephthalate)-nanodiamond-graphene nanoplatelet nanocomposites. J Mater Sci 51:1000–1016

    Article  Google Scholar 

  14. Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide-from synthesis to application: a review. Mater 7:2833–2881

    Article  Google Scholar 

  15. Gao W, Zhou B, Liu Y, Ma X, Liu Y, Wang Z, Zhu Y (2013) The influence of surface modification on the structure and properties of a zinc oxide-filled poly(ethylene terephthalate). Polym Int 62:432–438

    Article  CAS  Google Scholar 

  16. Li X, Xing Y, Li W, Jiang Y, Ding Y (2010) Antibacterial and physical properties of poly(vinyl chloride)-based film coated with ZnO nanoparticles. Food Sci Technol Int 9:1837–1842

    Google Scholar 

  17. Agrawal H, Saraswat VK, Awasthi K (2013) ZnO doping in PET matrix enhances conductivity of PET-ZnO nanocomposites. Adv Electrochem 1:118–123

    Article  Google Scholar 

  18. Abdolmaleki A, Mallakpour S, Borandeh S (2011) Preparation, characterization and surface morphology of novel optically active poly(ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process. App Surf Sci 257:6725–6733

    Article  CAS  Google Scholar 

  19. Arya SK, Saha S, Ramirez-Vick JE, Gupta V, Bhansali S, Singh SP (2012) Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal Chim Acta 737:1–21

    Article  CAS  Google Scholar 

  20. Sedlák J, Kuřitka I, Machovský M, Šuly P, Bažant P, Sedláček T (2015) Zinc oxide nanoparticles with surface modified by degradation of capping polymers in situ during microwave synthesis. Adv Powder Technol 26:1064–1071

    Article  Google Scholar 

  21. Mallakpour S, Khadem E (2016) Chapter 16 recent achievements in the synthesis of biosafe poly(vinyl alcohol) nanocomposite. In: Inamuddin S (ed) Green polymer composites technology; properties and applications. Taylor & Francis Group, Boca Raton, pp 261–278

    Chapter  Google Scholar 

  22. Mallakpour S, Jarang N (2015) Mechanical, thermal and optical properties of nanocomposite films prepared by solution mixing of poly(vinyl alcohol) with titania nanoparticles modified with citric acid and vitamin C. J Plast Film Sheet. doi:10.1177/8756087915597024

    Google Scholar 

  23. Mallakpour S, Jarahiyan A (2015) An eco-friendly approach for the synthesis of biocompatible poly(vinyl alcohol) nanocomposite with aid of modified CuO nanoparticles with citric acid and vitamin C: mechanical, thermal and optical properties. J Iran Chem Soc. doi:10.1007/s13738-015-0760-S3

    Google Scholar 

  24. Reis EFd, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP (2006) HS Mansur, Synthesis and characterization of poly(vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9:185–191

    Article  Google Scholar 

  25. Mallakpour S, Javadpour M (2015) Effective methodology for the production of novel nanocomposite films based on poly(vinyl chloride) and zinc oxide nanoparticles modified with green poly(vinyl alcohol). Polym Compos. doi:10.1002/pc.23750

    Google Scholar 

  26. Mallakpour S, Dinari M, Azadi E (2015) Poly(vinyl alcohol) chains grafted onto the surface of copper oxide nanoparticles: application in synthesis and characterization of novel optically active and thermally stable nanocomposites based on poly(amide-imide) containing N-trimellitylimido-l-valine linkage. Int J Polym Anal Charact 20:82–97

    Article  CAS  Google Scholar 

  27. Mamoor G, Shahid W, Mushtaq A, Amjad U, Mehmood U (2013) Recycling of mixed plastics waste containing polyethylene, polyvinylchloride and polyethylene terephthalate. Chem Eng Res Bull 16:25–32

    Article  Google Scholar 

  28. Sepperumal U, Markandan M, Palraja I (2013) Micromorphological and chemical changes during biodegradation of polyethylene terephthalate (PET) by Penicillium sp. J Microbiol Biotechnol Res 3:47–53

    Google Scholar 

  29. Vijayakumar S, Rajakumar P (2012) Infrared spectral analysis of waste pet samples. Int Lett Chem Phys Astro 4:58–65

    Article  Google Scholar 

  30. Mallakpour S, Behranvand V (2016) Chapter 24 grafted nano-ZnO, TiO by biosafe coupling agents and their applications for the green polymer nanocomposites fabrication. In: Inamuddin S (ed) Green polymer composites technology; properties and applications. Taylor & Francis Group, Boca Raton, pp 381–396

    Chapter  Google Scholar 

  31. Strain IN, Wu Q, Pourrahimi AM, Hedenqvist MS, Olsson RT, Andersson RL (2015) Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. J Mater Chem A 3:1632–1640

    Article  CAS  Google Scholar 

  32. Oyeleke G, Popoola A, Adetuyi A (2015) Changes in surface properties and dyeability of polyethylene terephthalate fibre pretreated with selected chlorinated solvents. J Polym Biopolym Phys Chem 3:6–11

    CAS  Google Scholar 

  33. Bhat N, Deshmukh R (2002) X-ray crystallographic studies of polymeric materials. Indian J Pure Appl Phys 40:361–366

    CAS  Google Scholar 

  34. Baldenegro-Perez LA, Navarro-Rodriguez D, Medellin-Rodriguez FJ, Hsiao B, Avila-Orta CA, Sics I (2014) Molecular weight and crystallization temperature effects on poly(ethylene terephthalate)(PET) homopolymers, an isothermal crystallization analysis. Polymer 6:583–600

    Article  Google Scholar 

  35. Mallakpour S, Madani M (2014) Facile approach to prepare poly(amide–imide)/ZnO nanocomposites derived from l-leucine-based diacid and 4,4′-Sulfonyldianiline: using ultrasound irradiation and ionic liquid. Polym Plast Technol Eng 53:423–428

    Article  CAS  Google Scholar 

  36. Wang Q, Pei W (2010) Synthesis of 3,4-dihydropyrimidin-2 (1H)-ones catalyzed by nafion-H under ultrasound irradiation and solvent-free conditions. J Iran Chem Soc 7:318–321

    Article  CAS  Google Scholar 

  37. Jiang X, Luo S, Sun K, Chen X (2007) Effect of nucleating agents on crystallization kinetics of PET. Express Polym Lett 1:245–251

    Article  CAS  Google Scholar 

  38. Cui W, Jiao Q, Zhao Y, Li H, Liu H, Zhou M (2012) Preparation of poly(ethylene terephthalate)/layered double hydroxide nanocomposites by in situ polymerization and their thermal property. Express Polym Lett 6:485–493

    Article  CAS  Google Scholar 

  39. Kaleel S, Bahuleyan BK, Masihullah J, Al-Harthi M (2011) Thermal and mechanical properties of polyethylene/doped-TiO2 nanocomposites synthesized using in situ polymerization. J Nanomater 2011:65

    Google Scholar 

  40. Mallakpour S, Abdolmaleki A, Rostami M (2014) Morphological and thermal properties of poly(amide-imide)/ZnO nanocomposites derived from 4,4′-methylenebis(3-chloro-2,6-diethyl trimellitimidobenzene) and 3,5-diamino-N-(4-hydroxyphenyl) benzamide. Polym Plast Technology Eng 53:1615–1624

    Article  CAS  Google Scholar 

  41. Mallakpour S, Zadehnazari A (2013) Synthesis of novel nanostructured chiral poly(amide-imide) s containing dopamine and natural amino acids. J Chem Sci 125:203–211

    Article  CAS  Google Scholar 

  42. Coltro L, Padula M, Saron ES, Borghetti J, Buratin AEP (2003) Evaluation of a UV absorber added to PET bottles for edible oil packaging. Packag Technol Sci 16:15–20

    Article  CAS  Google Scholar 

  43. Zak AK, Razali R, Majid W, Darroudi M (2011) Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int J Nanomed 6:1399–1403

    Google Scholar 

  44. Abdul Nabi M, Yusop RM, Yousif E, Abdullah BM, Salimon J, Salih N, Zubairi SI (2014) Effect of nano ZnO on the optical properties of poly(vinyl chloride) films. Int J Polym Sci. 2014(Article ID 697809):6. doi:10.1155/2014/697809

    Google Scholar 

  45. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol. 2012(Article ID 372505):6. doi:10.5402/2012/372505

    Google Scholar 

Download references

Acknowledgements

The research was financially supported by the Research Affairs Division of Isfahan University of Technology (IUT), Isfahan, Iran, National Elite Foundation (NEF), Iran, and Center of Excellence in Sensors and Green Chemistry Research (IUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Javadpour, M. Host recycled poly(ethylene terephthalate) and guest PVA-grafted ZnO nanoparticles: prepared nanocomposites characterization. Polym. Bull. 75, 1715–1730 (2018). https://doi.org/10.1007/s00289-017-2120-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2120-1

Keywords

Navigation