Skip to main content
Log in

Preparation, characterization and performance study of modified PVDF-based membranes containing palladium nanoparticle-modified graphene hierarchical nanostructures: as a new catalytic nanocomposite membrane

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A well-defined amphiphilic graft copolymer (PVDF-g-PAm) was synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP) of acrylamide (Am) from C–F bonds of PVDF as a macro-initiator. PVDF-g-PAm-synthesized copolymer was thoroughly characterized using Fourier-transform infrared spectroscopy (FTIR) and 1H-nuclear magnetic resonance spectroscopy (1H NMR). Blend of PVDF and PVDF-g-PAm copolymer was filled with already prepared hierarchical nanostructures of palladium nanoparticles-functionalized graphene oxide (Pd NPs–FGO) to achieve high-performance catalytic nanocomposite membranes. The catalytic activity and reusability of the prepared catalytic membranes for the Suzuki reaction were investigated in a homemade cell. Results revealed that the reactivity and reusability of catalytic membranes containing the hierarchical nanostructures (Pd NPs–FGO) were remarkably improved compared with that of the conventional catalytic membranes containing the unsupported Pd NPs in the membrane matrix. Therefore, the strategy of immobilization of the Pd NPs on the FGO surface is a good approach to minimize the potential Pd NPs loss. The thermal properties, morphology and catalyst content of the prepared catalytic nanocomposite membranes were also studied by means of different techniques such as thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectroscopy (ICP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11

Similar content being viewed by others

References

  1. Pendergast MTM, Nygaard JM, Ghosh AK, Hoek EMV (2010) Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261(3):255–263

    Article  CAS  Google Scholar 

  2. Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158(7):2335–2349

    Article  CAS  Google Scholar 

  3. Aerts P, Kuypers S, Genne I, Leysen R, Mewis J, Vankelecom IFJ, Jacobs PA (2006) Polysulfone–ZrO2 surface interactions. The influence on formation, morphology and properties of zirfon-membranes. J Phys Chem B 110(14):7425–7430

    Article  CAS  Google Scholar 

  4. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Leonidas G (2004) Aligned multiwalled carbon nanotube membranes. Science 303(5654):62–65

    Article  CAS  Google Scholar 

  5. Tiraferri A, Vecitis CD, Elimelech M (2011) Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl Mater Interfaces 3(8):2869–2877

    Article  CAS  Google Scholar 

  6. Strathmann H (2001) Membrane separation processes: current relevance and future opportunities. AIChE J 47(5):1077–1087

    Article  CAS  Google Scholar 

  7. Chae SR, Wang S, Hendren ZD, Wiesner MR, Watanabe Y, Gunsch CK (2009) Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. J Membr Sci 329(1):68–74

    Article  CAS  Google Scholar 

  8. Qiu L, Zhang X, Yang W, Wang Y, Simon GP, Li D (2011) Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chem Commun 47(20):5810–5812

    Article  CAS  Google Scholar 

  9. Prakash S, Charan C, Singh AK, Shahi VK (2013) Mixed metal nanoparticles loaded catalytic polymer membrane for solvent free selective oxidation of benzyl alcohol to benzaldehyde in a reactor. Appl Catal B Environ 132:62–69

    Article  Google Scholar 

  10. Buonomenna MG, Choi SH, Drioli E (2010) Catalysis in polymeric membrane reactors: the membrane role. Asia-Pacific J Chem Eng 5(1):26–34

    Article  CAS  Google Scholar 

  11. Maira AJ, Lau WN, Lee CY, Yue PL, Chan CK (2003) Performance of a membrane-catalyst for photocatalytic oxidation of volatile organic compounds. Chem Eng Sci 58:959–962

    Article  CAS  Google Scholar 

  12. Schmidt A, Wolf A, Warsitz R, Dittmeyer R, Urbanczyk D, Voigt I, Fischer G, Schomacker R (2008) A pore-flow-through membrane reactor for partial hydrogenation of 1,5-cyclooctadiene. AIChE J 54(1):258–268

    Article  CAS  Google Scholar 

  13. Taurozzi JS, Crock CA, Tarabara VV (2011) C-60-polysulfone nanocomposite membranes: entropic and enthalpic determinants of C-60 aggregation and its effects on membrane properties. Desalination 269(1–3):111–119

    Article  CAS  Google Scholar 

  14. Brunet L, Lyon DY, Zodrow K, Rouch JC, Caussat B, Serp P, Remigy JC, Wiesner MR, Alvarez PJJ (2008) Properties of membranes containing semi-dispersed carbon nanotubes. Environ Sci Eng 25(4):565–575

    Article  CAS  Google Scholar 

  15. Crock CA, Rogensues AR, Shan W, Tarabaran VV (2013) Polymer nanocomposites with graphene-based hierarchical fillers as materials for multifunctional water treatment membranes. Water Res 47(12):3984–3996

    Article  CAS  Google Scholar 

  16. Mahdavi H, Rahimi A, Shahalizade T (2016) Catalytic polymeric membranes with palladium nanoparticle/multi-wall carbon nanotubes as hierarchical nanofillers: preparation, characterization and application. J Polym Res 23:39

    Article  Google Scholar 

  17. Sullivan JA, Flanagan KA, Hain H (2009) Suzuki coupling activity of an aqueous phase Pd nanoparticle dispersion and a carbon nanotube/Pd nanoparticle composite. Catal Today 145(1):108–113

    Article  CAS  Google Scholar 

  18. Boitiaux JP, Cosyns J, Vasudevan S (1983) Hydrogenation of highly unsaturated hydrocarbons over highly dispersed palladium catalyst: part I: behaviour of small metal particles. Appl Catal 6(1):41–51

    Article  CAS  Google Scholar 

  19. Hoke JB, Gramiccioni GA, Balko EN (1992) Catalytic hydrodechlorination of chlorophenols. Appl Catal B Environ 1(4):285–296

    Article  CAS  Google Scholar 

  20. Kwon MS, Kim N, Park CM, Lee JS, Kang KY, Park J (2005) Palladium nanoparticles entrapped in aluminum hydroxide: dual catalyst for alkene hydrogenation and aerobic alcohol oxidation. Org Lett 7(6):1077–1079

    Article  CAS  Google Scholar 

  21. Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F (2010) Gold nanoparticles–graphene hybrids as active catalysts for Suzuki reaction. Mater Res Bull 45(10):1413–1418

    Article  CAS  Google Scholar 

  22. Mu B, Li T, Li J, Wu Y (2008) The highly efficient Suzuki–Miyaura cross-coupling reaction using cyclopalladated N-alkylferrocenylimine as a catalyst in aqueous medium at room temperature under ambient atmosphere. J Organ Chem 693(7):1243–1251

    Article  CAS  Google Scholar 

  23. Huang W, Huang J, Xu C, Gu S, Xu W (2014) Surface functionalization of cellulose membrane via heterogeneous ‘‘click’’ grafting of zwitterionic sulfobetaine. Polym Bull 71:2559–2569

    Article  CAS  Google Scholar 

  24. Kang GD, Cao YM (2014) Application and modification of poly(vinylidene fluoride) (PVDF)membranes—a review. J Membr Sci 463:145–165

    Article  CAS  Google Scholar 

  25. Maruf SH, Wang L, Greenberg AR, Pellegrino J, Ding Y (2014) Use of nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration membranes. J Membr Sci 428:598–607

    Article  Google Scholar 

  26. Maruf SH, Rickman M, Wang L, Mersch IVJ, Greenberg AR, Pellegrino J, Ding Y (2013) Influence of sub-micron surface patterns on the deposition of model proteins during active filtration. J Membr Sci 444:420–428

    Article  CAS  Google Scholar 

  27. Girones M, Akbarsyah IJ, Nijdam W, Rijn CJM, Jansen HV, Lammertink RGH, Wessling M (2006) Polymeric microsieves produced by phase separation micromolding. J Membr Sci 283:411–424

    Article  CAS  Google Scholar 

  28. Vogelaar L, Lammertink RGH, Barsema JN, Nijdam W, Bolhuis-Versteeg LAM, Rijn CJM, Wessling M (2005) Phase separation micromolding: a new generic approach for microstructuring various materials. Small 6:645–655

    Article  Google Scholar 

  29. Liu D, Li D, Du D, Zhao X, Qin A, Li X, He C (2015) Antifouling PVDF membrane with hydrophilic surface of terry pile-like structure. J Membr Sci 493:243–251

    Article  CAS  Google Scholar 

  30. Pyun J, Kowalewski T, Matyjaszewski K (2003) Synthesis of polymer brushes using atom transfer radical polymerization. Macromol Rapid Commun 24:1043–1059

    Article  CAS  Google Scholar 

  31. Cope AC, Friedrich EC (1968) Electrophilic aromattic substitution reactions by platinum (II) and palladium (II) chlorides on N,N-dimethylbenzylamines. J Am Chem Soc 90(4):909–913

    Article  CAS  Google Scholar 

  32. Jr Hummers, William S, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  Google Scholar 

  33. Flanagan KA, Sullivan JA, Müeller-Bunz H (2007) Preparation and characterization of 4-dimethylaminopyridine-stabilized palladium nanoparticles. Langmuir 23(25):12508–12520

    Article  CAS  Google Scholar 

  34. Neouze MA, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh Chem 139(3):183–195

    Article  CAS  Google Scholar 

  35. Murugan R, Mohan S, Bigotto A (1998) FTIR and polarised Raman spectra of acrylamide and polyacrylamide. J Korean Phys Soc 32(4):505–512

    CAS  Google Scholar 

  36. Hester JF, Banerjee P, Won YY, Akthakul A, Acar MH, Mayes AM (2002) ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules 35(20):7652–7661

    Article  CAS  Google Scholar 

  37. Lang WZ, Xua ZL, Yang H, Tong W (2007) Preparation and characterization of PVDF–PFSA blend hollow fiber UF membrane. J Membr Sci 288:123–131

    Article  CAS  Google Scholar 

  38. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375(1):284–294

    Article  CAS  Google Scholar 

  39. Suhasa DP, Aminabhavib TM, Jeongc HM, Raghud AV (2015) Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Adv 5:100984–100995

    Article  Google Scholar 

  40. Yu J, Jiang P, Wu C, Wang L, Wu X (2011) Graphene nanocomposites based on poly(vinylidene fluoride): structure and properties. Polym Compos 32(10):1483–1491

    Article  CAS  Google Scholar 

  41. Julbe A, Farrusseng D, Guizard C (2001) Porous ceramic membranes for catalytic reactors—overview and new ideas. J Membr Sci 181(1):3–20

    Article  CAS  Google Scholar 

  42. Motamedhashemi MMY, Egolfopoulos F, Tsotsis T (2011) Application of a flow-through catalytic membrane reactor (FTCMR) for the destruction of a chemical warfare simulant. J Membr Sci 376(1):119–131

    Article  CAS  Google Scholar 

  43. Fayyazi F, Feijani EA, Mahdavi H (2015) Chemically modified polysulfone membrane containing palladium nanoparticles: preparation, characterization and application as an efficient catalytic membrane for Suzuki reaction. Chem Eng Sci 134:549–554

    Article  CAS  Google Scholar 

  44. Das P, Sharma D, Shil AK, Kumari A (2011) Solid-supported palladium nano and microparticles: an efficient heterogeneous catalyst for ligand-free Suzuki–Miyaura cross coupling reaction. Tetrahedron Lett 52(11):1176–1178

    Article  CAS  Google Scholar 

  45. Liu Y, Feng X, Bao D, Li K, Bao M (2010) A new method for the preparation of microcapsule-supported palladium catalyst for Suzuki coupling reaction. J Mol Catal A Chem 323(1):16–22

    Article  CAS  Google Scholar 

  46. Zhang Y, Hurley KD, Shapley JR (2011) Heterogeneous catalytic reduction of perchlorate in Water with Re–Pd/C catalysts derived from an oxorhenium (V) molecular precursor. Inorg Chem 50(4):1534–1543

    Article  CAS  Google Scholar 

  47. Lee KH, Han SW, Kwon KY, Park JB (2013) Systematic analysis of palladium–graphene nanocomposites and their catalytic applications in Sonogashira reaction. J Colloid Interface Sci 403:127–133

    Article  CAS  Google Scholar 

  48. Nutt MO, Hughes JB, Wong MS (2005) Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ Sci Technol 39(5):1346–1353

    Article  CAS  Google Scholar 

  49. Dharupaneedi SP, Anjanapura RV, Han JM, Aminabhavi TM (2014) functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind Eng Chem Res 53(37):14474–14484

    Article  CAS  Google Scholar 

  50. Suhas PD, Raghu AV, Jeongb HM, Aminabhavia TM (2013) Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via pervaporation technique. RSC Adv 3:17120–17130

    Article  CAS  Google Scholar 

  51. Adoor SG, Manjeshwar LS, Bhat SD, Aminabhavi TM (2008) Aluminum-rich zeolite beta incorporated sodium alginate mixed matrix membranes for pervaporation dehydration and esterification of ethanol and acetic acid. J Membr Sci 318:233–246

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the University of Tehran for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, H., Rahimi, A. & Alam, L.A. Preparation, characterization and performance study of modified PVDF-based membranes containing palladium nanoparticle-modified graphene hierarchical nanostructures: as a new catalytic nanocomposite membrane. Polym. Bull. 74, 3557–3577 (2017). https://doi.org/10.1007/s00289-017-1909-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1909-2

Keywords

Navigation