Skip to main content
Log in

Facile synthetic route for the preparation of PVC/α-MnO2-PVA nanocomposites: morphology, thermal, mechanical and Cd(II) adsorption properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study deals with the effect of α-MnO2-PVA as filler for improving the optical, mechanical, thermal, adsorption capacity and self-extinguishing properties of poly(vinyl chloride) (PVC) matrix. Therefore, α-MnO2 nanorods were obtained successfully by a hydrothermal method and were modified with poly(vinyl alcohol) (PVA) to increase compatibility of α-MnO2 with the organic PVC matrix and reduce the accumulation. Accordingly, PVC/α-MnO2-PVA nanocomposites (NCs) were fabricated with different amounts of modified nanorods (1, 3 and 5 wt%) by ultrasonic irradiation technique. Samples were characterized by instrumental analyses such as FT-IR, XRD, FE-SEM and TEM. Properties of NC films and neat PVC were evaluated with different techniques. Also, the PVC/α-MnO2-PVA NC was used as an efficient adsorbent for the removal of cadmium. It was found that PVC/α-MnO2-PVA NCs have better thermal, optical, tensile and self-extinguishing properties relative to pure PVC. The results from adsorption experiment showed that prepared NC is an effective adsorbent for the removal of Cd ions from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Prateek Thakur VK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317. doi:10.1021/acs.chemrev.5b00495

    Article  CAS  Google Scholar 

  2. Deka BK, Maji TK, Mandal M (2011) Study on properties of nanocomposites based on HDPE, LDPE, PP, PVC, wood and clay. Polym Bull 67:1875–1892. doi:10.1007/s00289-011-0529-5

    Article  CAS  Google Scholar 

  3. Mallakpour S, Jarahiyan A (2015) An eco-friendly approach for the synthesis of biocompatible poly(vinyl alcohol) nanocomposite with aid of modified CuO nanoparticles with citric acid and vitamin C: mechanical, thermal and optical properties. J Iran Chem Soc. doi:10.1007/s13738-015-0760-3

    Google Scholar 

  4. Wang C, Li N, Huo L, Gao J (2015) Effect of carbon nanotube on the mechanical, plasticizing behavior and thermal stability of PVC/poly(acrylonitrile–styrene–acrylate) nanocomposites. Polym Bull 72:1849–1861. doi:10.1007/s00289-015-1376-6

    Article  CAS  Google Scholar 

  5. Hadj-Hamou AS, Matassi S, Abderrahmane H, Yahiaoui F (2014) Effect of cloisite 30B on the thermal and tensile behavior of poly(butylene adipate-co-terephthalate)/poly(vinyl chloride) nanoblends. Polym Bull 71:1483–1503. doi:10.1007/s00289-014-1137-y

    Article  CAS  Google Scholar 

  6. Sterky K, Jacobsen H, Jakubowicz I et al (2010) Influence of processing technique on morphology and mechanical properties of PVC nanocomposites. Eur Polym J 46:1203–1209. doi:10.1016/j.eurpolymj.2010.03.021

    Article  CAS  Google Scholar 

  7. Yoo Y, Kim SS, Won JC, Choi KY, Lee JH (2004) Enhancement of the thermal stability, mechanical properties and morphologies of recycled PVC/clay nanocomposites. Polym Bull 52:373–380. doi:10.1007/s00289-004-0296-7

    Article  CAS  Google Scholar 

  8. Wan C, Qiao X, Zhang Y, Zhang Y (2003) Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test 22:453–461. doi:10.1016/S0142-9418(02)00126-5

    Article  CAS  Google Scholar 

  9. Guojiann W, Lijuan W, Mei Z, Zhengmian C (2009) Reinforcement and toughening of poly(vinyl chloride) with poly(caprolactone) grafted carbon nanotubes. Compos Part A Appl Sci Manuf 40:1476–1481. doi:10.1016/j.compositesa.2009.05.011

    Article  Google Scholar 

  10. Tompsett DA, Parker SC, Islam MS (2014) Surface properties of α-MnO2: relevance to catalytic and supercapacitor behaviour. J Mater Chem A 2:15509. doi:10.1039/C4TA00952E

    Article  CAS  Google Scholar 

  11. Wang Y, Guan H, Du S, Wang Y (2015) A facile hydrothermal synthesis of MnO2 nanorod–reduced graphene oxide nanocomposites possessing excellent microwave absorption properties. RSC Adv 5:88979–88988. doi:10.1039/C5RA15165A

    Article  CAS  Google Scholar 

  12. Sun B, Chen Z, Kim HS et al (2011) MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries. J Power Sources 196:3346–3349. doi:10.1016/j.jpowsour.2010.11.090

    Article  CAS  Google Scholar 

  13. Xu M, Wang H, Lei D et al (2013) Removal of Pb(II) from aqueous solution by hydrous manganese dioxide: adsorption behavior and mechanism. J Environ Sci 25:479–486. doi:10.1016/S1001-0742(12)60100-4

    Article  CAS  Google Scholar 

  14. Guo Y, Guo H, Wang Y et al (2014) Designed hierarchical MnO2 microspheres assembled from nanofilms for removal of heavy metal ions. RSC Adv 4:14048. doi:10.1039/c4ra01044b

    Article  CAS  Google Scholar 

  15. Kim M, Hwang Y, Kim J (2013) Super-capacitive performance depending on different crystal structures of MnO2 in graphene/MnO2 composites for supercapacitors. J Mater Sci 48:7652–7663. doi:10.1007/s10853-013-7583-3

    Article  CAS  Google Scholar 

  16. Lu M, Lu Y, Qiu K et al (2016) One-pot synthesized ultrathin MnO2 nanorods as advanced electrodes for high-performance supercapacitors. Mater Lett 166:255–258. doi:10.1016/j.matlet.2015.12.099

    Article  CAS  Google Scholar 

  17. Rasul S, Suzuki S, Yamaguchi S, Miyayama M (2013) Manganese oxide octahedral molecular sieves as insertion electrodes for rechargeable Mg batteries. Electrochim Acta 110:247–252. doi:10.1016/j.electacta.2013.06.094

    Article  CAS  Google Scholar 

  18. Chen J, Wang Y, He X et al (2014) Electrochimica acta electrochemical properties of MnO2 nanorods as anode materials for lithium ion batteries. Electrochim Acta 142:152–156. doi:10.1016/j.electacta.2014.07.089

    Article  CAS  Google Scholar 

  19. Alfaruqi MH, Islam S, Gim J et al (2016) A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chem Phys Lett 650:64–68. doi:10.1016/j.cplett.2016.02.067

    Article  CAS  Google Scholar 

  20. Burange AS, Kale SR, Jayaram RV (2012) Oxidation of alkyl aromatics to ketones by tert-butyl hydroperoxide on manganese dioxide catalyst. Tetrahedron Lett 53:2989–2992. doi:10.1016/j.tetlet.2012.03.091

    Article  CAS  Google Scholar 

  21. Wang F, Dai H, Deng J et al (2012) Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46:4034–4041. doi:10.1021/es204038j

    Article  CAS  Google Scholar 

  22. Tompsett DA, Islam MS (2013) Electrochemistry of hollandite α-MnO2: Li-ion and Na-ion insertion and Li2O incorporation. Chem Mater 25:2515–2526. doi:10.1021/cm400864n

    Article  CAS  Google Scholar 

  23. Gilbert B, Ono RK, Ching KA, Kim CS (2009) The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. J Colloid Interface Sci 339:285–295. doi:10.1016/j.jcis.2009.07.058

    Article  CAS  Google Scholar 

  24. Mokhtari PFJ (2015) Fabrication and characterization of electrospun PVA/CdS and PVA/TiO2 nanocomposite thin films as n-type semiconductors. Polym Bull 72:2363–2375. doi:10.1007/s00289-015-1409-1

    Article  Google Scholar 

  25. Mallakpour S, Soltanian S (2010) Studies on syntheses and morphology characteristic of chiral novel poly (ester-imide)/TiO2 bionanocomposites derived from l-phenylalanine based diacid. Polymer (Guildf) 51:5369–5376. doi:10.1016/j.polymer.2010.09.063

    Article  CAS  Google Scholar 

  26. Wang X, Li Y (2002) Rational synthesis of α-MnO2 single-crystal nanorods. Chem commun 764–765

  27. Kang L, Zhang M, Liu ZH, Ooi K (2007) IR spectra of manganese oxides with either layered or tunnel structures. Spectrochim Acta Part A Mol Biomol Spectrosc 67:864–869. doi:10.1016/j.saa.2006.09.001

    Article  Google Scholar 

  28. Li L, Pan Y, Chen L, Li G (2007) One-dimensional α-MnO2: trapping chemistry of tunnel structures, structural stability, and magnetic transitions. J Solid State Chem 180:2896–2904. doi:10.1016/j.jssc.2007.08.017

    Article  CAS  Google Scholar 

  29. Wekesa I (2013) Synthesis and characterization of whisker-shaped MnO2 nanostructure at room temperature. Appl Nanosci 3:329–333. doi:10.1007/s13204-012-0135-3

    Article  Google Scholar 

  30. Dunbai Z, Changgen CAI, Demin JIA (2006) Preparation and mechanical properties of solid-phase grafting nanocomposites of pvc/graft copolymers/MMT. J Wuhan Univ Technol Mater Sci Ed 21:2–5

    Article  Google Scholar 

  31. Vasanthkumar MS, Bhatia R, Arya VP, Sameera I, Prasad V, Jayanna HS (2014) Characterization, charge transport and magnetic properties of multi-walled carbon nanotube-polyvinyl chloride nanocomposites. Phys E Low-dimensional Syst Nanostructures 56:10–16. doi:10.1016/j.physe.2013.08.010

    Article  CAS  Google Scholar 

  32. Kuo C, Li W, Pahalagedara L et al (2015) Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions. Angew Chem Int Ed Engl 54:2345–2350. doi:10.1002/anie.201407783

    Article  CAS  Google Scholar 

  33. Kumar BMP, Shivaprasad KH, Raveendra RS et al (2014) Preparation of MnO2 nanoparticles for the adsorption of environmentally hazardous malachite green dye. Int J Appl Innov Eng Manag 3:102–106

    Article  Google Scholar 

  34. Rajamanickam N, Ganesan P, Rajashabala S, Ramachandran K (2014) Structural and optical properties of α-MnO2 nanowires and β-MnO2 nanorods. Solid State Phys AIP Conf Proc 1591:267–269. doi:10.1063/1.4872568

    CAS  Google Scholar 

  35. Mallakpour S, Aalizadeh R (2014) Application of TiO2 nanoparticles modified with bioactive diacid in manufacturing of polymer nanocomposites containing 4,4′-sulfonyl dianiline and N, N′-(pyromellitoyl)-bis- l-valine Diacid. Synth React Inorganic, Met Nano-Metal Chem 44:1450–1456. doi:10.1080/15533174.2013.809752

    Article  CAS  Google Scholar 

  36. Zhou Fu, Zhao X, Yuan C, Xu H (2007) Synthesis of γ-MnOOH nanorods and their isomorphous transformation into β-MnO2 and α-Mn2O3 nanorods. J Mater Sci 42:9978–9982. doi:10.1007/s10853-007-2054-3

    Article  CAS  Google Scholar 

  37. Devaraj S, Munichandraiah N (2007) Surfactant stabilized nanopetals morphology of α-MnO2 prepared by microemulsion method. J Solid State Electrochem 12:207–211. doi:10.1007/s10008-007-0364-7

    Article  Google Scholar 

  38. Yang F (2005) Flammability of polymer-clay and polymer-silica nanocomposites. J Fire Sci 23:209–226. doi:10.1177/0734904105046615

    Article  Google Scholar 

  39. Mallakpour S, Javadpour M (2015) Design and characterization of novel poly(vinyl chloride) nanocomposite films with zinc oxide immobilized with biocompatible citric acid. Colloid Polym Sci 293:2565–2573. doi:10.1007/s00396-015-3647-z

    Article  CAS  Google Scholar 

  40. van Krevelen D (1975) Some basic aspects of flame resistance of polymeric materials. Polymer (Guildf) 16:615–620. doi:10.1016/0032-3861(75)90157-3

    Article  Google Scholar 

  41. Tan G, Li Z, Yuan H, Xiao D (2014) Sorption of cadmium from aqueous solution with a highly effective sorbent–B-doped g-C3N4. Sep Sci Technol 49:1566–1573. doi:10.1080/01496395.2013.879481

    Article  CAS  Google Scholar 

  42. Tan G, Xiao D (2009) Adsorption of cadmium ion from aqueous solution by ground wheat stems. J Hazard Mater 164:1359–1363. doi:10.1016/j.jhazmat.2008.09.082

    Article  CAS  Google Scholar 

  43. Tehrani MS, Azar P A, Namin PE, Dehaghi SM (2013) Removal of Lead Ions from Wastewater Using Functionalized Multiwalled Carbon Nanotubes with Tris(2-Aminoethyl)Amine. J Environ Prot (Irvine, Calif) 4:529–536. doi:10.4236/jep.2013.46062

  44. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. doi:10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  45. Dong L, Zhu Z, Ma H, Qiu Y, Zhao J (2010) Simultaneous adsorption of lead and cadmium on MnO2-loaded resin. J Environ Sci 22:225–229. doi:10.1016/S1001-0742(09)60097-8

    Article  CAS  Google Scholar 

  46. Zhi-liang Z, Hong-mei M, Rong-hua Z, Yuan-xin G (2007) Removal of cadmium using MnO2 loaded D301 resin. J Environ Sci 19:652–656. doi:10.1016/S1001-0742(07)60109-0

    Article  Google Scholar 

  47. Borzou A, Kalbasi M, Hoodaji M et al (2014) Isotherm investigation of the adsorption of cadmium onto modified poly (ethylene terephthalate) fiber. Eur J Exp Biol 4:136–142

    CAS  Google Scholar 

  48. Laus R, De Favere VT (2011) Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate. Bioresour Technol 102:8769–8776. doi:10.1016/j.biortech.2011.07.057

    Article  CAS  Google Scholar 

  49. Guijarro-Aldaco A, Hernández-Montoya V, Bonilla-Petriciolet A et al (2011) Improving the adsorption of heavy metals from water using commercial carbons modified with egg shell wastes. Ind Eng Chem Res 50:9354–9362. doi:10.1021/ie2006627

    Article  CAS  Google Scholar 

  50. Rout K, Mohapatra M, Mohapatra BK, Anand S (2009) Pb (II), Cd (II) and Zn (II) adsorption on low grade manganese ore. Int J Phys Sci 1:106–122

    Google Scholar 

  51. Ahn SH, Park JT, Kim JH et al (2011) Nanocomposite membranes consisting of poly(vinyl chloride) graft copolymer and surface-modified silica nanoparticles. Macromol Res 19:1195–1201. doi:10.1007/s13233-011-1116-1

    Article  CAS  Google Scholar 

  52. Liu C, Luo YF, Jia ZX et al (2011) Enhancement of mechanical properties of poly(vinyl chloride) with Polymethyl methacrylate-grafted halloysite nanotube. Express Polym Lett 5:591–603. doi:10.3144/expresspolymlett.2011.58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shadpour Mallakpour or Amir Abdolmaleki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Abdolmaleki, A. & Tabebordbar, H. Facile synthetic route for the preparation of PVC/α-MnO2-PVA nanocomposites: morphology, thermal, mechanical and Cd(II) adsorption properties. Polym. Bull. 74, 2957–2973 (2017). https://doi.org/10.1007/s00289-016-1876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1876-z

Keywords

Navigation