Skip to main content
Log in

TiO2/polystyrene core–shell nanoparticles as fillers for LLDPE/PLA blend: development, and morphological, thermal and mechanical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Titanium dioxide/polystyrene (TiO2/PS) core–shell nanoparticles (CSNPs) reinforced linear low density polyethylene/poly (lactic acid) (LLDPE/PLA) blends were developed by means of compounding and injection moulding. TiO2/PS CSNPs were prepared by ultrasound-assisted method while PLA was prepared by polycondensation of l-lactic acid, and were added to commercial grade LLDPE. The morphological analysis, carried out by electron microscopy, revealed significant phase separation in LLDPE/PLA blends but showed improved compatibility in LLDPE/PLA (TiO2/PS) nanocomposites. The thermal behaviour of the nanocomposites, as observed from thermogravimetric analysis (TGA), was also improved as compared to its blend counterparts. The incorporation of TiO2/PS CSNPs also resulted in better mechanical properties. With the addition of 1 phr TiO2/PS CSNPs, the tensile strength and elongation of LLDPE/PLA/(TiO2/PS) nanocomposites increased significantly. The results demonstrate the effect of TiO2/PS CSNPs in providing better interfacial adhesion between LLDPE and PLA which led to significant improvement in the mechanical strength of the nanocomposites by allowing effective load transfer in the nanocomposites system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. CEH: Polyethylene Resins, Linear Low-Density (LLDPE). https://www.ihs.com/products/linear-low-density-polyethylene-chemical-economics-handbook.html. Accessed 16 July 2015

  2. Balakrishnan H, Hassan A, Imran M, Wahit MU (2011) Aging of toughened polylactic acid nanocomposites: water absorption, hygrothermal degradation and soil burial analysis. J Polym Environ 19:863–875

    Article  CAS  Google Scholar 

  3. Francis V, Subin SR, Bhat SG, Thachil ET (2012) Characterization of linear low-density polyethylene/poly(vinyl alcohol) blends and their biodegradability by Vibrio sp. isolated from marine benthic environment. J Appl Polym Sci 124(1):257–265

    Article  CAS  Google Scholar 

  4. Raghul SS, Bhat SG, Chandrasekaran M, Francis V, Thachil ET (2014) Biodegradation of polyvinyl alcohol-low linear density polyethylene-blended plastic film by consortium of marine benthic vibrios. Int J Environ Sci Technol 11:1827–1834

    Article  CAS  Google Scholar 

  5. Farhan M, Ab Aziz B, Mohamed R (2013) Biodegradability of starch based films blend with LLDPE and PVA. Adv Mater Res 795:115–118

    Article  Google Scholar 

  6. Khoramnejadian Shahrzad (2011) Kinetic study of biodegradation of linear low density polyethylene/chitosan. Adv Environ Biol 5(10):3050–3055

    CAS  Google Scholar 

  7. Awal A, Rana M, Sain M (2015) Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites. Mech Mater 80:87–95

    Article  Google Scholar 

  8. Shimpi Navinchandra, Borane Mahesh, Mishra Satyendra, Kadam Meghraj (2012) Biodegradation of polystyrene (PS)-poly(lactic acid) (PLA) nanocomposites using Pseudomonas aeruginosa. Macromol Res 20(2):181–187

    Article  CAS  Google Scholar 

  9. Shimpi NG, Borane M, Mishra S (2014) Preparation, characterization, and biodegradation of PS:PLA and PS:PLA:OMMT nanocomposites using Aspergillus niger. Polym Compos 35(2):263–272

    Article  CAS  Google Scholar 

  10. Singh G, Kaur N, Bhunia H, Bajpai PK, Mandal UK (2012) Degradation behaviors of linear low density polyethylene and poly(l-lactic acid) blends. J Appl Polym Sci 124:1993–1998

    Article  CAS  Google Scholar 

  11. Shimpi NG, Borane MD, Kadam M, Mishra S (2015) Effect of organically modified montmorillonite (OMMT) on biodegradation of PS:PLA and PS:PLA:OMMT using Phanerochaete chrysosporium. Polym Compos. doi:10.1002/pc.23694

  12. Balakrishnan H, Hassan A, Wahit MU (2010) Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends. J Elastom Plast 42(3):223–239

    Article  CAS  Google Scholar 

  13. Nuñez K, Rosales C, Perera R, Villarreal N, Pastor JM (2012) Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polym Eng Sci 52:988–1004. doi:10.1002/pen.22168

    Article  Google Scholar 

  14. Liu G, Li Y-f, Yan F-y, Zhao Z-x, Zhou L-c, Xue Q-j (2005) Effect of Nanoscale SiO2 and TiO2 as the Fillers on the Mechanical Properties and Aging Behavior of Linear Low-Density Polyethylene/Low-Density Polyethylene Blends. J Polym Environ 13(4):339–348. doi:10.1007/s10924-005-5528-x

    Article  CAS  Google Scholar 

  15. Zapata PA, Rabagliati FM, Lieberwirth I, Catalina F, Corrales T (2014) Study of the photodegradation of nanocomposites containing TiO2 nanoparticles dispersed in polyethylene and in poly(ethylene-cooctadecene). Polym Degrad Stab 109:106–114

    Article  CAS  Google Scholar 

  16. Gutierrez J, Mondragon I, Tercjak A (2011) Morphological and optical behavior of thermoset matrix composites varying both polystyrene-block-poly(ethylene oxide) and TiO2 nanoparticle content. Polymer 52:5699–5707

    Article  CAS  Google Scholar 

  17. Ekrachan C, Somsakun P, Okorn M, Joongjai P, Artiwan S, Bunjerd J (2012) LLDPE/TiO nanocomposites produced from different crystallite sizes of TiO via in situ polymerization. Chin Sci Bull 57(17):2177–2184. doi:10.1007/s11434-012-5021-6

    Article  Google Scholar 

  18. Wang Z, Li G, Xie G, Zhan Z (2005) Dispersion behavior of TiO2 nanoparticles in LLDPE/LDPE/TiO2 nanocomposites. Macromol Chem Phys 206(2):258–262

    Article  CAS  Google Scholar 

  19. Owpradit W, Jongsomjit B (2008) A comparative study on synthesis of LLDPE/TiO2 nanocomposites using different TiO2 by in situ polymerization with zirconocene/dMMAO catalyst. Mater Chem Phys 112(3):954–961

    Article  CAS  Google Scholar 

  20. Luo HL, Sheng J, Wan YZ (2008) Preparation and characterization of TiO2/polystyrene core–shell nanospheres via microwave-assisted emulsion polymerization. Mater Lett 62(1):37–40

    Article  CAS  Google Scholar 

  21. Fang X, Yang H, Gang W, Li W, Chen H, Wang M (2009) Preparation and characterization of low density polystyrene/TiO2 core–shell particles for electronic paper application. Curr Appl Phys 9(4):755–759

    Article  Google Scholar 

  22. Chen ZM, Pan SJ, Yin HJ, Zhang LL, Ou EC, Xiong YQ, Xu WJ (2011) Facile synthesis of superhydrophobic TiO2/Polystyrene core-shell microspheres. Express Polym Lett 5(1):38–46

    Article  CAS  Google Scholar 

  23. Li Y, Sun Z, Zhang J, Zhang K, Wang Y, Wang Z, Chen X, Zhu S, Yang B (2008) Polystyrene@TiO2 core-shell microsphere colloidal crystals and nonspherical macro-porous materials. J Colloid Interface Sci 325(2):567–572. doi:10.1016/j.jcis.2008.06.019

    Article  CAS  Google Scholar 

  24. Vaezi MR, Arefian NA, Tabriz MF, Kandjani AE (2012) IJE Trans B Appl 25:131–135

    CAS  Google Scholar 

  25. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Test 21:557–563

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navinchandra G. Shimpi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimpi, N.G., Borane, M. & Mishra, S. TiO2/polystyrene core–shell nanoparticles as fillers for LLDPE/PLA blend: development, and morphological, thermal and mechanical properties. Polym. Bull. 73, 3049–3063 (2016). https://doi.org/10.1007/s00289-016-1640-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1640-4

Keywords

Navigation