Skip to main content
Log in

Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di- or polyamines in the context of structure–properties relationship and from an environmental point of view

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Commercially, polyurethanes are produced by the reaction of diisocyanates, polyols (polyester or polyether) and low molecular weight chain extender. Toxicity, moisture sensitivity and phosgene-based synthesis of diisocyanates resulted in investigations focused on obtaining the non-isocyanate polyurethanes (NIPUs). This work presents the review of synthesis and structure–properties relationship of non-isocyanate polyurethanes obtained by reacting cyclic carbonated intermediates with diamines or polyamines. Moreover, the presented methods of NIPU synthesis were analysed from the environmental point of view. Described five-membered ring cyclic carbonate intermediates were obtained by carbonation of glycidyl ethers or thiol-ene coupling of unsaturated cyclic carbonate monomers and thiols. The special interest was put on the bio-based non-isocyanate polyurethanes, obtained from chemically modified bio-based substances, e.g. carbonated vegetable oils. The mechanical and thermal properties of NIPUs are affected by functionality, structure and molecular weight of cyclic carbonate intermediates and diamines or polyamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Prociak A, Rokicki G, Ryszkowska J (2014) Polyurethane materials. PWN Press, Warsaw

    Google Scholar 

  2. Wirpsza Z (1993) Polyurethanes—chemistry technology and applications. WNT Press, Warsaw

    Google Scholar 

  3. Guan J, Song Y, Lin Y, Yin X, Zuo M, Zhao Y, Tao X, Zheng Q (2011) Progress in study of non-isocyanate polyurethane. Ind Eng Chem Res 50(11):6517–6527

    Article  CAS  Google Scholar 

  4. Kathalewar MS, Joshi PB, Sabnis AS, Malshe VC (2013) Non-isocyanate polyurethanes: from chemistry to applications. RSC Adv 3:4110–4129

    Article  CAS  Google Scholar 

  5. Figovsky OL, Shapovalov L, Axenov O (2004) Advanced coatings based upon non-isocyanate polyurethanes for industrial applications. Surf Coat Int B Coat Trans 87:83–90

    Article  CAS  Google Scholar 

  6. Figovsky OL, Shapovalov L, Buslov F (2005) Ultraviolet and thermostable non-isocyanate polyurethane coatings. Surf Coat Int B Coat Trans 88:67–71

    Article  CAS  Google Scholar 

  7. Figovsky O, Shapovalov L (2006) Cyclocarbonate based polymers including non-isocyanate polyurethane adhesives and coatings. In: Somasundaran P (ed) Encyclopedia of surface and colloid science, vol 3., Taylor & Francis GroupCRC Press, New York, pp 1633–1653

    Google Scholar 

  8. Figovsky O, Shapovalov L (2001) Nonisocyanate polyurethanes for adhesives and coatings. In: First International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. Proceedings, IEEE, Germany, pp 257–264. doi:10.1109/POLYTR.2001.973291

  9. Figorsky O, Shapovalov L (2004) Hybrid Nonisocyanate Polyurethane Adhesives. In: International conference on polymer bonding 2004. The Bonding of Rubber and Plastics to Various Substrates. Rapra Technology Ltd., Munich, pp 99–103

    Google Scholar 

  10. Hanada K, Kimura K, Takahashi K, Kawakami O, Uruno M (2012) Polysiloxane-modified polyhydroxy polyurethane resin, method for producing same, heat-sensitive recording material using the resin, imitation leather, thermoplastic polyolefin resin skin material, material for weather strip, and weather strip. US Patent US2012/0231184 A1. http://www.google.com/patents/US20120231184

  11. Hanada K, Kimura K, Takahashi K, Kawakami O, Uruno M (2012) Polysiloxane-modified polyhydroxy polyurethane resin, method for producing same, heat-sensitive recording material using the resin, imitation leather, thermoplastic polyolefin resin skin material, material for weather strip, and weather strip. US Patent US2012/0237701 A1. http://www.google.com/patents/US20120237701

  12. Cornille A, Dworakowska S, Bogdal D, Boutevin B, Caillol S (2015) A new way of creating cellular polyurethane materials: NIPU foams. Eur Polym J 66:129–138

    Article  CAS  Google Scholar 

  13. Figovsky O, Shapovalov L, Leykin A, Birukova O, Potashnikova R (2013) Advances in the field of nonisocyanate polyurethanes based on cyclic carbonates. Chem Chem Technol 7:79–87

    CAS  Google Scholar 

  14. Ochiai B, Utsuno T (2013) Non-isocyanate synthesis and application of telechelic polyurethanes via polycondensation of diurethanes obtained from ethylene carbonate and diamines. J Polym Sci A Polym Chem 51:525–533

    Article  CAS  Google Scholar 

  15. Rokicki G, Piotrowska A (2002) A new route to polyurethanes from ethylene carbonate, diamines and diols. Polymer 43:2927–2935

    Article  CAS  Google Scholar 

  16. Unverferth M, Kreye O, Prohammer A, Meier MAR (2013) Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols. Macromol Rapid Commun 34:1569–1574

    Article  CAS  Google Scholar 

  17. Ubaghs L, Fricke N, Keul H, Hocker H (2004) Polyurethanes with pendant hydroxyl groups: synthesis and characterization. Macromol Rapid Commun 25:517–521

    Article  CAS  Google Scholar 

  18. Schmitz F, Keul H, Höcker H (1997) Alternating copolymers of tetramethylene urea with 2,2-dimethyltrimethylene carbonate and ethylene carbonate; preparation of the corresponding polyurethanes. Macromol Rapid Commun 18:699–706

    Article  CAS  Google Scholar 

  19. Schmitz F, Keul H, Höcker H (1998) Copolymerization of 2,2-dimethyltrimethylene carbonate with tetramethylene urea: a new route to the polyurethane. Polymer 39:3179–3186

    Article  CAS  Google Scholar 

  20. Yanagishita Kato M, Toshima K, Matsumura S (2008) Chemoenzymatic synthesis and chemical recycling of sustainable polyurethanes. ChemSusChem 1:133–142

    Article  CAS  Google Scholar 

  21. Kihara N, Makabe K, Endo T (1996) Polycondensation of o-hydroxy carboxylic acid derived from l-phenylalanine and ethylene carbonate. J Polym Sci A Polym Chem 34:1819–1822

    Article  CAS  Google Scholar 

  22. Versteegen RM, Sijbesma RP, Meijer EW (1999) [n]-Polyurethanes: Synthesis and Characterization.nh Angew Chem Int Ed 38:2917-2919

  23. Masuyama A, Iwasaki T, Okahara M (1986) Preparation and thermolysis of N-ammonioamidates as model precursors of new type of segmented poly(ether-urethane)s. Makromol Chem 187:1833–1841

    Article  CAS  Google Scholar 

  24. Neffgen S, Kušan J, Fey T, Keul H, Höcker H (2000) Synthesis and thermal properties of [n]-polyurethanes. Macromol Chem Phys 201:2108–2114

    Article  CAS  Google Scholar 

  25. Webster DC, Crain AL (2000) Synthesis and applications of cyclic carbonate functional polymers in thermosetting coatings. Prog Org Coat 40:275–282

    Article  CAS  Google Scholar 

  26. Tang CN, Nulwala HB, Damodaran K, Kaur P, Luebke DR (2011) Tunable poly(hydroxyl urethane) from CO2-Based intermediates using thiol-ene chemistry. J Polym Sci A Polym Chem 49:2024–2032

    Article  CAS  Google Scholar 

  27. Li Z, Zhao Y, Yan S, Wang X, Kang M, Wang J, Xiang H (2008) Catalytic synthesis of carbonated soybean oil. Catal Lett 123:246–251

    Article  CAS  Google Scholar 

  28. Mahendran AR, Aust N, Wuzella G, Müller U, Kandelbauer A (2012) Bio-based non-isocyanate urethane derived from plant oil. J Polym Environ 20:926–931

    Article  CAS  Google Scholar 

  29. Benyahya S, Habas JP, Auvergne R, Lapinte V, Caillol S (2012) Structure-property relationships in polyhydroxyurethanes produced from terephthaloyl dicyclocarbonate with various polyamines. Polym Int 61:1666–1674

    Article  CAS  Google Scholar 

  30. Steblyanko A, Choi W, Sanda F, Endo T (2000) Addition of five-membered cyclic carbonate with amine and its application to polymer synthesis. J Polym Sci A Polym Chem 38:2375–2380

    Article  CAS  Google Scholar 

  31. Annunziata L, Diallo AK, Fouquay S, Michaud G, Simon F, Brusson JM, Carpentiera JF, Guillaume SM (2014) α, ω-Di(glycerol carbonate) telechelic polyesters and polyolefins as precursors to polyhydroxyurethanes: an isocyanate-free approach. Green Chem 16(4):1947–1956

    Article  CAS  Google Scholar 

  32. Tomczyk KM, Guñka PA, Parzuchowski PG, Zachara J, Rokicki G (2012) Intramolecular etherification of five-membered cyclic carbonates bearing hydroxyalkyl groups. Green Chem 14:1749–1758

    Article  CAS  Google Scholar 

  33. Tomita H, Sanda F, Endo T (2001) Reactivity comparison of five- and six-membered cyclic carbonates with amines: basic evaluation for synthesis of poly(hydroxyurethane). J Polym Sci A Polym Chem 39:162–168

    Article  CAS  Google Scholar 

  34. Tomita H, Sanda F, Endo T (2001) Polyaddition behavior of bis(five- and six-membered cyclic carbonate)s with diamine. J Polym Sci A Polym Chem 39:860–867

    Article  CAS  Google Scholar 

  35. Al-Azemi TF, Bisht KS (2002) Synthesis of novel bis- and tris-(cyclic carbonate)s and their use in preparation of polymer networks. Polymer 43:2161–2167

    Article  CAS  Google Scholar 

  36. Maisonneuve L, Wirotius AL, Alfos C, Grauab E, Cramail H (2014) Fatty acid-based (bis) 6-membered cyclic carbonates as efficient isocyanate free poly(hydroxyurethane) precursors. Polym Chem 5:6142–6147

    Article  CAS  Google Scholar 

  37. Tomita H, Sanda F, Endo T (2001) Polyaddition of bis(seven-membered cyclic carbonate) with diamines: a novel and efficient synthetic method for polyhydroxyurethanes. J Polym Sci A Polym Chem 39:4091–4100

    Article  CAS  Google Scholar 

  38. Tomita H, Sanda F, Endo T (2001) Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine. J Polym Sci A Polym Chem 39:3678–3685

    Article  CAS  Google Scholar 

  39. Ochiai B, Inoue S, Endo T (2005) One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide, and diamine. J Polym Sci A Polym Chem 43:6613–6618

    Article  CAS  Google Scholar 

  40. Hoşgör Z, Kayaman-Apohan N, Karataş S, Menceloğlu Y, Güngör A (2010) Preparation and characterization of phosphine oxide based polyurethane/silica nanocomposite via non-isocyanate route. Prog Org Coat 69(4):366–375

    Article  Google Scholar 

  41. Sheng X, Ren G, Qin Y, Chen X, Wang X, Wang F (2015) Quantitative synthesis of bis(cyclic carbonate)s by iron catalyst for non-isocyanate polyurethane synthesis. Green Chem 17:373–379

    Article  CAS  Google Scholar 

  42. Fleischer M, Blattmann H, Mülhaupt R (2013) Glycerol-, pentaerythritol- and trimethylolpropane-based polyurethanes and their cellulose carbonate composites prepared via the non-isocyanate route with catalytic carbon dioxide fixation. Green Chem 15:934–942

    Article  CAS  Google Scholar 

  43. Camara F, Benyahya S, Besse V, Boutevin G, Auvergne R, Boutevin B, Caillol S (2014) Reactivity of secondary amines for the synthesis of non-isocyanate polyurethanes. Eur Pol J 55:17–26

    Article  CAS  Google Scholar 

  44. Bähr M, Bitto A, Mülhaupt R (2012) Cyclic limonene dicarbonate as a new monomer for non-isocyanate oligo- and polyurethanes (NIPU) based upon terpenes. Green Chem 14:1447–1454

    Article  Google Scholar 

  45. Besse V, Auvergne R, Carlotti S, Boutevin G, Otazaghine B, Caillol S, Pascault JP, Boutevin B (2013) Synthesis of isosorbide based polyurethanes: an isocyanate free method. React Funct Polym 73:588–594

    Article  CAS  Google Scholar 

  46. Boyer A, Cloutet E, Tassaing T, Gadenne B, Alfos C, Cramail H (2010) Solubility in CO2 and carbonation studies of epoxidized fatty acid diesters: towards novel precursors for polyurethane synthesis. Green Chem 12:2205–2213

    Article  CAS  Google Scholar 

  47. Maisonneuve L, More AS, Flotran S, Alfos C, Robert F, Landais Y, Tassaing T, Grau E, Cramail H (2014) Novel green fatty acid-based bis-cyclic carbonates for the synthesis of isocyanate-free poly(hydroxyurethane amide)s. RSC Adv 4:25795–25803

    Article  CAS  Google Scholar 

  48. Kathalewar M, Sabnis A, D’Mello D (2014) Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur Pol J 57:99–108

    Article  CAS  Google Scholar 

  49. Figovsky O, Shapovalov L (2007) Preparation of oligomeric cyclocarbonates and their use in nonisocyanate or hybrid nonisocyanate polyurethanes. Pat US 7232877:B2

    Google Scholar 

  50. Figovsky O, Shapovalov L, Blank N, Buslov F (2002) Cyclocarbonate groups containing hydroxyamine oligomers from epoxycylclocarbonates. Pat US 6407198:B1

    Google Scholar 

  51. Rappoport L (2001) Water-compatible urethane-containing amine hardener. Pat US 6218480:B1

    Google Scholar 

  52. Herlihy SL, Rowatt B, Davidson RS (2008) Carbonate containing energy-curable compositions. Pat US 20080286486:A1

    Google Scholar 

  53. Rokicki G, Parzuchowski PG, Maciejewski D, Rzytki P (2007) Hyperbranched poly(hydroxyethers) from bicyclic carbonate with phenol group. Polimery 52:648–657

    CAS  Google Scholar 

  54. Javni I, Hong DP, Petrović ZS (2008) Soy-based polyurethanes by nonisocyanate route. J Appl Polym Sci 108:3867–3875

    Article  CAS  Google Scholar 

  55. Javni I, Hong DP, Petrović ZS (2013) Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route. J Appl Polym Sci 12:8566–8571

    Google Scholar 

  56. Bähr M, Mülhaupt R (2012) Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion. Green Chem 14:483–489

    Article  Google Scholar 

  57. Mann N, Mendon SK, Rawlins JW, Thames F (2008) Synthesis of carbonated vernonia oil. J Am Oil Chem Soc 85:791–796

    Article  CAS  Google Scholar 

  58. Zhang L, Luo Y, Hou Z, He Z, Eli W (2014) Synthesis of carbonated cotton seed oil and its application as lubricating base oil. J Am Oil Chem Soc 91:143–150

    Article  CAS  Google Scholar 

  59. Turunc O, Kayaman-Apohan N, Kahraman MV, Menceloglu Y, Gungor A (2008) Nonisocyanate based polyurethane/silica nanocomposites and their coating performance. Sol-Gel Sci Technol 47:290–299

    Article  CAS  Google Scholar 

  60. Doll KM, Erhan SZ (2005) The improved synthesis of carbonated soybean oil using supercritical carbon dioxide at a reduced reaction time. Green Chem 7:849–854

    Article  CAS  Google Scholar 

  61. Parzuchowski PG, Jurczyk-Kowalska M, Ryszkowska J, Rokicki G (2006) Epoxy resin modified with soybean oil containing cyclic carbonate groups. J Appl Polym Sci 102:2904–2914

    Article  CAS  Google Scholar 

  62. Mazo PC, Rios LA (2012) Improved synthesis of carbonated vegetable oils using microwaves. Chem Eng 210:333–338

    Article  CAS  Google Scholar 

  63. Alves M, Grignard B, Gennen S, Detrembleur C, Jerome C, Tassaing T (2015) Organocatalytic synthesis of bio-based cyclic carbonates from CO2 and vegetable oils. RSC Adv 5:53629–53636

    Article  CAS  Google Scholar 

  64. Birukov O, Figovsky O, Leykin A, Potashnikov A, Shapovalov L (2012) Method of producing hybrid polyhydroxyurethane network on a base of carbonated-epoxidized unsaturated fatty acid triglycerides. US Patent US 2012/0208967 A1. http://www.google.com/patents/US20120208967

  65. Wilkes G, Sohn S, Tamami B (2006) Nonisocyanate Polyurethane Materials, and their Preparation from Epoxidized Soybean Oils and Related Epoxidized Vegetable Oils, Incorporation of Carbon Dioxide into Soybean Oil, and Carbonation of Vegetable Oils. US Patent US 7045577 B2. http://www.google.com/patents/US7045577

  66. Fache M, Darroman E, Besse V, Auvergne R, Caillol S, Boutevin B (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chem 16:1987–1998

    Article  CAS  Google Scholar 

  67. Benyahya S, Desroches M, Auvergne R, Carlotti S, Caillol S, Boutevin B (2011) Synthesis of glycerin carbonate-based intermediates using thiol–ene chemistry and isocyanate free polyhydroxyurethanes therefrom. Polym Chem 2:2661–2667

    Article  CAS  Google Scholar 

  68. Parzuchowski PG, Kiźlińska M, Rokicki G (2007) New hyperbranched polyether containing cyclic carbonate groups as a toughening agent for epoxy resin. Polymer 48:1857–1865

    Article  CAS  Google Scholar 

  69. Jana S, Yu H, Parthiban A, Chai CLL (2010) Controlled synthesis and functionalization of PEGylated methacrylates bearing cyclic carbonate pendant groups. J Polym Sci A Polym Chem 48:1622–1632

    Article  CAS  Google Scholar 

  70. Ochiai B, Ootani Y, Maruyama T, Endo T (2007) Synthesis and properties of polymethacrylate bearing cyclic carbonate through urethane linkage. J Polym Sci A Polym Chem 45:5781–5789

    Article  CAS  Google Scholar 

  71. Nishikubo T, Kameyama A, Sasano M (1994) Synthesis of functional polymers bearing cyclic carbonate groups from (2-oxo-1,3-dioxolan-4-yl) methyl vinyl ether. J Polym Sci A Polym Chem 32:301–308

    Article  CAS  Google Scholar 

  72. Hino T, Inoue N, Endo T (2005) Ring-opening metathesis copolymerization behaviors of cyclooctene and norbornene bearing a five- or six-membered ring cyclic carbonate. J Polym Sci A Polym Chem 43:6599–6604

    Article  CAS  Google Scholar 

  73. Webster D, Crain A (1998) Synthesis of cyclic carbonate functional polymers. In: Patil O, Schulz DN, Novak BM (eds) Functional Polymer, Modern Synthetic Methods and Novel Structures. ACS Symposium Series, vol 70. American Chemical Society, pp 303–320

  74. Kalinina FE, Mognonov DM, Radnaeva LD (2008) Poly(hydroxy urethane) coatings prepared from copolymers of 3-(2-vinyloxyethoxy)-l,2-propylene carbonate and N-phenylmaleimide. Russ J Appl Chem 81:1302–1304

    Article  CAS  Google Scholar 

  75. Miyata T, Matsumoto K, Endo T, Yonemori S, Watanabe S (2012) Synthesis and radical polymerization of styrene-based monomer having a five-membered cyclic carbonate structure. J Polym Sci A Polym Chem 50:3046–3051

    Article  CAS  Google Scholar 

  76. Brocas AL, Cendejas G, Caillol S, Deffieux A, Carlotti S (2011) Controlled synthesis of polyepichlorohydrin with pendant cyclic carbonate functions for isocyanate-free polyurethane networks. J Polym Sci A Polym Chem 49:2677–2684

    Article  CAS  Google Scholar 

  77. Park DW, Kim KH, Park SY, Sung CK, Park SW (2002) Direct incorporation of carbon dioxide in poly(glycidyl methacrylate) and its application to the synthesis of hydrogel. React Kinet Catal Lett 75:375

    Article  CAS  Google Scholar 

  78. Helou M, Carpentier JF, Guillaume SM (2011) Poly(carbonate-urethane): an isocyanate-free procedure from α, ω-di(cyclic carbonate) telechelic poly(trimethylene carbonate)s. Green Chem 13(2):266–271

    Article  CAS  Google Scholar 

  79. Kathalewar M, Sabnis A, Waghoo G (2013) Effect of incorporation of surface treated zinc oxide on non-isocyanate polyurethane based nano-composite coatings. Prog Org Coat 76:1215–1229

    Article  CAS  Google Scholar 

  80. Kihara N, Kushida Y, Endo T (1996) Optically active poly(hydroxyurethane)s derived from cyclic carbonate and l-lysine derivatives. J Polym Sci A Polym Chem 34:2173–2179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, J., Włoch, M. Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di- or polyamines in the context of structure–properties relationship and from an environmental point of view. Polym. Bull. 73, 1459–1496 (2016). https://doi.org/10.1007/s00289-015-1546-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1546-6

Keywords

Navigation