Skip to main content
Log in

Synthesis of amphiphilic alginate derivatives and electrospinning blend nanofibers: a novel hydrophobic drug carrier

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

As a kind of novel hydrophobic drug carrier materials, the drug-loaded nanofibers were successfully fabricated using amphiphilic alginate derivative (AAD) and poly (vinyl alcohol) (PVA) by electrospinning method. The AAD was synthesized by amide linkage attachment of octylamine onto the carboxylic group of alginate, which was characterized by the means of elemental analysis, FT-IR spectrometer, 1H NMR spectrometer and fluorescence measurement. Experimental results showed the amidation of alginate was successful, in which the degree of modification was 0.27 and the critical aggregation concentration in 0.15 mol/L aqueous NaCl solution was 0.43 mg/mL. The octyl groups of AAD could effectively make alginate chains flexible and enhance chain entanglements through the hydrophobic interactions between octyl groups. In contrast to sodium alginate (SA)/PVA blend solutions, AAD/PVA blend solutions showed more excellent electrospinnability. Additionally, the different volume ratios of SA or AAD to PVA played an important role in the formation and morphology of the electrospun blend nanofibers. Although the amidation of alginate could not fundamentally alter the spinnability of alginate, the content of alginate in the blend nanofibers was appropriately increased. The new generated drug-loaded AAD/PVA (20/80) blend nanofibers exhibited relatively continuous and uniform nanofibers with the average diameter of 191.72 nm. Compared to the drug-loaded SA/PVA (20/80) blend nanofibers, the drug-loaded AAD/PVA (20/80) blend nanofibers presented a sustained release performance with the slow release of about 76 % λ-cyhalothrin during the initial period of 10 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hu XL, Liu S, Zhou GY, Huang YB, Xie ZG, Jing XB (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    CAS  PubMed  Google Scholar 

  2. Shalumon KT, Anulekha KH, Nair SV, Chennazhi KP, Jayakumar R (2011) Sodium alginate/poly (vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 49:247–254

    CAS  PubMed  Google Scholar 

  3. Han XJ, Huang ZM, He CL, Liu L, Wu QS (2006) Coaxial electrospinning of PC (shell)/PU (core) composite nanofibers for textile application. Polym Compos 27:381–387

    CAS  Google Scholar 

  4. Cui W, Li X, Zhou S, Weng JJ (2007) Investigation on process parameters of electrospinning systems through orthogonal experimental design. Appl Polym Sci 103:3105–3112

    CAS  Google Scholar 

  5. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the whell. Adv Mater 16:1151–1170

    CAS  Google Scholar 

  6. Dersch R, Steinhart M, Boudrio U, Greiner A, Wendorf JH (2005) Nanoprocessing of polymers: applications in medicine, sensorics, catalysis, photonics. Polym Adv Technol 16:276–282

    CAS  Google Scholar 

  7. Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S (2004) Recent advance in polymer nanofibers. J Nanosci Nanotechnol 4:52–65

    CAS  PubMed  Google Scholar 

  8. Neppalli R, Marega C, Marigo A, Bajgai MP, Kim HK, Causin V (2010) Poly(ε-caprolactone) filled with electrospun nylon fibers: a model for a facile composite fabrication. Eur Polym J 46:968–976

    CAS  Google Scholar 

  9. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    CAS  Google Scholar 

  10. Ding B, Li C, Miyauchi Y, Kuwaki O, Shiratori S (2006) Formation of novel 2D polymer nanowebs. Nanotechnology 17:3685–3691

    CAS  Google Scholar 

  11. Fang DW, Liu Y, Jiang S, Nie J, Ma GP (2011) Effect of intermolecular interaction on electrospinning of sodium alginate. Carbohydr Polym 85:276–279

    CAS  Google Scholar 

  12. Bu H, Nguyen GTM, Kjøniksen AL (2006) Effects of the quantity and structure of hydrophobes on the properties of hydrophobically modified alginates in aqueous solutions. Polym Bull 57:563–574

    CAS  Google Scholar 

  13. Yang JS, Zhao JY, Fang Y (2008) Calorimetric studies of the interaction between sodium alginate and sodium dodecyl sulfate in dilute solutions at different pH values. Carbohydr Res 343:719–725

    CAS  PubMed  Google Scholar 

  14. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review. J Control Release 114:1–14

    CAS  PubMed  Google Scholar 

  15. Hua SB, Ma HZ, Li X, Yang HX, Wang AQ (2010) pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int J Biol Macromol 46:517–523

    CAS  PubMed  Google Scholar 

  16. Sangamesh GK, Kumaresh SS, Tejraj MA (2003) Synthesis and characterization of polyacrylamide-grafted chitosan hydrogel microspheres for the controlled release of indomethacin. J Appl Polym Sci 87:1525–1536

    Google Scholar 

  17. Silva CM, Ribeiro AJ, Figueiredo M, Ferreira D, Veiga F (2006) Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. Aaps J 7:903–913

    Google Scholar 

  18. Connick WJ, Bradow JH, Wells W, Steward KK, Van TK (1984) Preparation and evaluation of controlled release formulations of 2,6-dichlorobenzonitrile. J Agric Food Chem 32:1199–1205

    CAS  Google Scholar 

  19. Pepperman AB, Kuan JW (1993) Slow release formulations of metribuzin based on alginate-kaolin-linseed oil. J Control Release 26:21–30

    CAS  Google Scholar 

  20. Fernández-Pérez M, Villafranca-Sánchez M, González-Pradas E, Martinez-López F, Flores-Céspedes F (2000) Controlled release of carbofuran from an alginate-bentonite formulation: water release kinetics and soil mobility. J Agric Food Chem 48:938–943

    PubMed  Google Scholar 

  21. Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 2 hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17:1045–1065

    CAS  Google Scholar 

  22. Yang LQ, Zhang BF, Wen LQ, Liang QY, Zhang LM (2007) Amphiphilic cholesteryl grafted sodium alginate derivative: synthesis and self-assembly in aqueous solution. Carbohydr Polym 68:218–225

    CAS  Google Scholar 

  23. Yang JS, Ren HB, Xie YJ (2011) Synthesis of amidic alginate derivatives and their application in microencapsulation of λ-cyhalothrin. Biomacromolecules 12:2982–2987

    CAS  PubMed  Google Scholar 

  24. Nie HR, He AH, Zheng JF, Xu SS, Li JX, Han CC (2008) Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 9:1362–1365

    CAS  PubMed  Google Scholar 

  25. Bonino CA, Krebs MD, Saquing CD, Jeong SI, Shearer KL, Alsberg E, Khan SA (2011) Electrospinning alginate-based nanofibers: from blends to crosslinked low molecular weight alginate-only systems. Carbohydr Polym 85:111–119

    CAS  Google Scholar 

  26. Bhattarai N, Li Z, Edmondson D, Zhang M (2006) Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater 18:1463–1467

    CAS  Google Scholar 

  27. Lu JW, Zhu YL, Guo ZX, Hu P, Yu J (2006) Electrospinning of sodium alginate with poly(ethylene oxide). Polymer 47:8026–8031

    CAS  Google Scholar 

  28. Lee YJ, Shin DS, Kwon OW, Park WH, Choi HG, Lee YR, Han SS, Noh SK, Lyoo WS (2007) Preparation of atactic poly(vinyl alcohol)/sodium alginate blend nanowebs by electrospinning. J Appl Polym Sci 106:1337–1342

    CAS  Google Scholar 

  29. SmidsrØd O (1970) Solution properties of alginate. Carbohydr Res 13:359–372

    Google Scholar 

  30. Mackie W, Perez S, Rizzo R, Taravel F, Vignon M (1983) Aspects of the conformation of polyguluronate in the solid state and in solution. Int J Biol Macromol 5:329–341

    CAS  Google Scholar 

  31. Barro R, Garcia-Jares C, Llompart M, Bollain MH, Cela R (2006) Rapid and sensitive determination of pyrethroids indoors using active sampling followed by ultrasound-assisted solvent extraction and gas chromatography. J Chromatogr A 1111:1–10

    CAS  PubMed  Google Scholar 

  32. Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan-PVA film for food packaging applications. Int J Biol Macromol 45:372–376

    CAS  PubMed  Google Scholar 

  33. Vallee F, Muller C, Durand A, Schimchowitsch S, Dellacherie E, Kelche C, Cassel JC, Leonard M (2009) Synthesis and rheological properties of hydrogels based on amphiphilic alginate-amide derivatives. Carbohydr Res 344:223–228

    CAS  PubMed  Google Scholar 

  34. Galant C, Kjøniksen AL, Nguyen GTM, Knudsen KD, Nystrom B (2006) Altering associations in aqueous solutions of a hydrophobically modified alginate in the presence of β-cyclodextrin monomers. J Phys Chem B 110:190–195

    CAS  PubMed  Google Scholar 

  35. Gomez CG, Chambat G, Heyraud A, Villar M, AuzelyVelty R (2006) Synthesis and characterization of a β-CD-alginate conjugate. Polymer 47:8509–8516

    CAS  Google Scholar 

  36. Liu CG, Desai KGH, Chen XG, Park HJ (2005) Linolenic acid-modified chitosan for formation of self assembled nanoparticles. J Agric Food Chem 53:437–441

    CAS  PubMed  Google Scholar 

  37. Islam MS, Karim MR (2010) Fabrication and characterization of poly (vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloid Surf A 366:135–140

    CAS  Google Scholar 

  38. Yan HQ, Chen XQ, Wu TT, Feng YH, Wang CX, Li JC, Lin Q (2014) Mechanochemical modification of kaolin surfaces for immobilization and delivery of pesticides in alginate-chitosan composite beads. Polym Bull 71:2923–2944

    CAS  Google Scholar 

  39. Nouvel C, Frochot C, Sadtler V, Dubois P, Dellacherie E, Six JL (2004) Polylactide-grafted dextrans: synthesis and properties at interfaces and in solution. Macromolecules 37:4981–4988

    CAS  Google Scholar 

  40. Li W, Li XY, Chen Y, Li XX, Deng HB, Wang T, Huang R, Fan G (2013) Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition. Carbohydr Polym 92:2232–2238

    CAS  PubMed  Google Scholar 

  41. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    CAS  Google Scholar 

  42. Bhattarai N, Zhang M (2007) Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology 18:455601(10 pp)

    Google Scholar 

  43. He Y, Zhu B, Inoue Y (2004) Hydrogen bonds in polymer blends. Prog Polym Sci 29:1021–1051

    CAS  Google Scholar 

  44. Talwar S, Krishnan AS, Hinestroza JP, Pourdeyhimi B, Khan SA (2010) Electrospun nanofibers with associative polymer-surfactant systems. Macromolecules 43:7650–7656

    CAS  Google Scholar 

  45. Nie HR, He AH, Wu WL, Zheng JF, Xu SS, Li JX, Han CC (2009) Effect of poly(ethylene oxide) with different molecular weights on the electrospinnability of sodium alginate. Polymer 50:4926–4934

    CAS  Google Scholar 

  46. Deng HB, Li XY, Ding B, Du YM, Li GX, Yang JH, Hu XW (2011) Fabrication of polymer/layered silicate intercalated nanofibrous mats and their bacterial inhibition activity. Carbohydr Polym 83:973–978

    CAS  Google Scholar 

  47. Zhang Y, Huang X, Duan B, Wu L, Li S, Yuan X (2007) Preparation of electrospun chitosan/poly (vinyl alcohol) membranes. Colloid Polym Sci 285:855–863

    CAS  Google Scholar 

  48. Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90:4836–4846

    CAS  Google Scholar 

  49. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92:227–231

    CAS  PubMed  Google Scholar 

  50. Ritger PL, Peppas NA (1987) A simple equation for description solute release. J Control Release 5:23–36

    CAS  Google Scholar 

  51. Singh B, Sharma DK, Kumar R, Gupta A (2009) Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Appl Clay Sci 45:76–82

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank the financial support form the National Natural Science Foundation of China (21366010), Hainan Province Fund (213010), Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (2011BAE06B06-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiacheng Li or Qiang Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yan, H., Sun, W. et al. Synthesis of amphiphilic alginate derivatives and electrospinning blend nanofibers: a novel hydrophobic drug carrier. Polym. Bull. 72, 3097–3117 (2015). https://doi.org/10.1007/s00289-015-1455-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1455-8

Keywords

Navigation