Skip to main content
Log in

Hectorite effects on swelling and gel properties of hectorite/poly(AM/IA) nanocomposite hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new hectorite/poly(AM/IA) nanocomposite hydrogel was synthesized by inverse microemulsion polymerization. Influences of hectorite content on water absorbency and salt solution absorbency, swellability, pH-sensitivity, gel strength and temperature-resistance of the nanocomposite hydrogel were investigated. Water and salt solution absorbencies, pH-sensitivity and swellability decreased while gel strength and temperature-resistance of the nanocomposite hydrogel increased with increasing hectorite content. The as-synthesized hydrogel particles were regular and spherical-like in shape and had the average particle size of 43 nm with the range of 30–65 nm. Hectorite clay platelets were exfoliated and transformed into amorphous structure within the polymeric networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kosemund K, Schlatter H, Ochsenhirt JL, Krause EL, Marsman DS, Erasala GN (2009) Safety evaluation of superabsorbent baby diapers. Regul Toxicol Pharm 53:81–89

    Article  CAS  Google Scholar 

  2. Liang R, Yuan HB, Xi GX, Zhou QX (2009) Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it. Carbohydr Polym 77:181–187

    Article  CAS  Google Scholar 

  3. Duan JC, Lu Q, Chen RW, DuanY Q, Wang LF, Gao L, Pan SY (2010) Synthesis of a novel flocculant on the basis of crosslinked Konjac glucomannan-graft-polyacrylamide-co-sodium xanthate and its application in removal of Cu2+ ion. Carbohydr Polym 80:436–441

    Article  CAS  Google Scholar 

  4. Sadeghi M, Hosseinzadeh HJ (2008) Synthesis of starch—poly(sodium acrylateco-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact Compat Polym 23:381–404

    Article  CAS  Google Scholar 

  5. Tongwa P, Nygaard R, Bai BJ (2013) Evaluation of a nanocomposite hydrogel for water shut-off in enhanced oil recovery applications: design, synthesis, and characterization. J Appl Polym Sci 128:787–794

    Article  CAS  Google Scholar 

  6. Hu J, Kurokawa T, Nakajima T, Sun TL, Suekama T, Wu ZL, Liang SM, Gong JP (2012) High fracture efficiency and stress concentration phenomenon for microgel-reinforced hydrogels based on double-network principle. Macromolecules 45:9445–9451

    Article  CAS  Google Scholar 

  7. Hashmi S, Nejad AG, Obiweluozor FO, Vatankhah-Varnoosfaderani M, Stadler FJ (2012) Supramolecular interaction controlled diffusion mechanism and improved mechanical behavior of hybrid hydrogel systems of Zwitterions and CNT. Macromolecules 45:9804–9815

    Article  CAS  Google Scholar 

  8. Okada K, Usuki A (2006) Twenty years of polymer–clay nanocomposites. Macromol Mater Eng 291:1449–1476

    Article  CAS  Google Scholar 

  9. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  10. Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35:10162–10171

    Article  CAS  Google Scholar 

  11. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N,N-dimethylacrylamide) and clay. Macromolecules 36:5732–5741

    Article  CAS  Google Scholar 

  12. Liang L, Liu J, Gong X (2000) Thermosensitive poly(N-isopropylacrylamide)-clay nanocomposites with enhanced temperature response. Langmuir 16:9895–9899

    Article  CAS  Google Scholar 

  13. Bhattacharyy R, Ray SK (2015) Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem Eng J 260:269–283

    Article  Google Scholar 

  14. Kaplan M, Kasgoz H (2011) Hydrogel nanocomposite sorbents for removal of basic dyes. Polym Bull 67:1153–1168

    Article  CAS  Google Scholar 

  15. Wang YZ, Wang WB, Wang AQ (2013) Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chem Eng J 228:132–139

    Article  CAS  Google Scholar 

  16. Zhu LX, Liu P, Wang AQ (2014) High clay-content attapulgite/poly(acrylic acid) nanocomposite hydrogel via surface-initiated redox radical polymerization with modified attapulgite nanorods as initiator and cross-linker. Ind Eng Chem Res 53:2067–2071

    Article  CAS  Google Scholar 

  17. Foungfung D, Phattanarudee S, Seetapanc N, Kiatkamjornwong S (2011) Acrylamide–itaconic acid superabsorbent polymers and superabsorbent polymer/mica nanocomposites. Polym Adv Technol 22:635–647

    Article  CAS  Google Scholar 

  18. Kaviratna PD, Pinnavaia TJ, Schroeder PA (1996) Dielectric properties of smectite clays. J Phys Chem Solids 57:1897–1906

    Article  CAS  Google Scholar 

  19. Shahin A, Joshi YM (2012) Physicochemical effects in aging aqueous Laponite suspensions. Langmuir 28:15674–15686

    Article  CAS  Google Scholar 

  20. Can Volkan, Abdurrahmanoglu Suzan, Okay Oguz (2007) Unusual swelling behavior of polymereclay nanocomposite hydrogels. Polymer 48:5016–5023

    Article  CAS  Google Scholar 

  21. Fukasawa M, Sakai T, Chung UI, Haraguchi K (2010) Synthesis and mechanical properties of a nanocomposite gel consisting of a tetra-PEG/clay network. Macromolecules 43:4370–4378

    Article  CAS  Google Scholar 

  22. Wu CJ, Schmidt G (2009) Thermosensitive and dissolution properties in nanocomposite polymer hydrogels. Macromol Rapid Commun 30:1492–1497

    Article  CAS  Google Scholar 

  23. Wu CJ, Gaharwar AK, Chan BK, Schmidt G (2011) Mechanically tough pluronic F127/Laponite nanocomposite hydrogels from covalently and physically cross-linked networks. Macromolecules 44:8215–8224

    Article  CAS  Google Scholar 

  24. Wang YR, Ma JH, Yang SG, Xu J (2011) PDMAA/clay nanocomposite hydrogels based on two different initiations. Colloids Surf A: Physico Chem Eng Asp 390:20–24

    Article  CAS  Google Scholar 

  25. Hu XB, Xiong LJ, Wang T, Lin ZM, Liu XX, Tong Z (2009) Synthesis and dual response of ionic nanocomposite hydrogels with ultrahigh tensibility and transparence. Polymer 50:1933–1938

    Article  CAS  Google Scholar 

  26. Xiong LJ, Zhu MN, Hu XB, Liu XX, Tong Z (2009) Ultrahigh deformability and transparence of hectorite clay nanocomposite hydrogels with nimble pH response. Macromolecules 42:3811–3817

    Article  CAS  Google Scholar 

  27. Wan T, Zhou ZL, Huang RQ, Zou CZ, Xu M, Cheng WZ, Li RX (2014) Synthesis and swelling properties of microcrystal muscovite composite superabsorbent. Appl Clay Sci 101:199–204

    Article  CAS  Google Scholar 

  28. Wan T, Li RX, Wu DQ, Hu ZW, Xu M, Cheng WZ, Zou CZ (2014) Rheological behaviors and structure of hydrophobically associating AM–SMA copolymers synthesized by microemulsion polymerization. Polym Bull 71:2819–2831

    Article  CAS  Google Scholar 

  29. Wan T, Xiong L, Huang RQ, Sun MM, Qin LL, Tan XM, Hu JY (2014) Properties and structure of microcrystal muscovite composite superabsorbent. J Wuhan Univ Technol 29(6):1302–1306

    Article  CAS  Google Scholar 

  30. Wan T, Xiong L, Huang RQ, Zhao QH, Tan XM, Qin LL, Hu JY (2014) Structure and properties of corn stalk-composite superabsorbent. Polym Bull 71:371–383

    Article  CAS  Google Scholar 

  31. Wan T, Huang RQ, Zhao QH, Xiong L, Luo L, Tan XM, Cai GJ (2013) Synthesis and swelling properties of corn stalk-composite superabsorbent. J Appl Polym Sci 130:698–703

    Article  CAS  Google Scholar 

  32. Wan T, Huang RQ, Zhao QH, Xiong L, Qin LL, Tan XM, Cai GJ (2013) Synthesis of wheat straw-composite superabsorbent. J Appl Polym Sci 130:3404–3410

    Article  CAS  Google Scholar 

  33. Wan T, Yao J, Sun ZS, Wang L, Wang J (2011) Solution and drilling fluid properties of water soluble AM–AA–SSS copolymers by inverse microemulsion. J Petrol Sci Eng 78:334–337

    Article  CAS  Google Scholar 

  34. Wan T, Zang TS, Wang YC, Zhang R, Sun XC (2010) Preparation of water soluble Am–AA–SSS copolymers by inverse microemulsion polymerization. Polym Bull 65:565–576

    Article  CAS  Google Scholar 

  35. Wan T, Wu C, Ma XL, Yao J, Lu K (2009) Microstructure and properties of silane monomer-modified styrene–acrylate nanocoatings. Polym Bull 62:801–811

    Article  CAS  Google Scholar 

  36. Wan T, Yao J, Ma XL (2008) Preparation of poly (AA–AM) water superabsorbent by inverse microemulsion polymerization. J Appl Polym Sci 110:3859–3864

    Article  CAS  Google Scholar 

  37. Wan T, Wang L, Yao J, Ma XL, Yin QS, Zang TS (2008) Saline solution absorbency and structure study of poly (AA–AM) water superabsorbent by inverse microemulsion polymerization. Polym Bull 60:431–440

    Article  CAS  Google Scholar 

  38. Wan T, Hu ZW, Ma XL, Yao J, Lu K (2008) Synthesis of silane monomer-modified styrene–acrylate microemulsion coatings by photopolymerization. Prog Org Coat 62:219–225

    Article  CAS  Google Scholar 

  39. Wan T, Wang XQ, Yuan Y, He WQ (2006) Preparation of bentonite-poly[(acrylic acid)-acrylamide] water superabsorbent by photopolymerization. Polym Int 55:1413–1419

    Article  Google Scholar 

  40. Wan T, Wang XQ, Yuan Y, He WQ (2006) Preparation of a kaolinite–poly(acrylic acid acrylamide) water superabsorbent by photopolymerization. J Appl Polym Sci 102:2875–2881

    Article  CAS  Google Scholar 

  41. Wan T, Wang YC, Feng F (2006) Preparation of titanium dioxide/polyacrylate nanocomposites by sol–gel process in reverse micelles and in situ photopolymerization. J Appl Polym Sci 102:5105–5112

    Article  CAS  Google Scholar 

  42. Wan T, Wang YC, Feng F (2006) Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites. Polym Bull 56:413–426

    Article  Google Scholar 

  43. Sandi G, Carrado KA, Joachin H, Lu W, Prakash J (2003) Polymer nanocomposites for lithium battery applications. J Power Sources 119–121:492–496

    Article  Google Scholar 

  44. Carrado KA, Xu LQ (1998) In situ synthesis of polymer–clay nanocomposites from silicate gels. Chem Mater 10:1440–1445

    Article  CAS  Google Scholar 

  45. Radheshyam RP, Bhavesh DK, Harshad B, Hari CB (2013) Template free synthesis of mesoporous hectorites: efficient host for Ph responsive drug delivery. Int J Pharm 446:145–152

    Article  Google Scholar 

  46. Govind S, Hasmukh AP, Radheshyam RP, Hari CB (2014) Porous synthetic hectorites for selective adsorption of carbon dioxide over nitrogen, methane, carbon monoxide and oxygen. Appl Clay Sci 91–92:63–69

    Google Scholar 

  47. Radheshyam RP, Hasmukh AP, Govind S, Hari CB (2009) Selective adsorption of carbon dioxide over nitrogen on calcined synthetic hectorites with tailor-made porosity. Appl Clay Sci 46:109–113

    Article  Google Scholar 

  48. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca and London

    Google Scholar 

  49. Murthy PSK, Mohan YM, Sreeramulu J, Raju KM (2006) Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): preparation, swelling and diffusion characteristics evaluation. React Funct Polym 66:1482–1493

    Article  CAS  Google Scholar 

  50. Warren TC, Prins W (1972) Polymer-diluent interaction in cross-linked gels of poly(2-hydroxyethyl metacrylate). Macromolecules 5:506–512

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of Sichuan Provincial Science and Technology Pillar Program, China (Grant No. 2013GZ0149, Grant No. 2014GZX0010), PetroChina Innovation Foundation, China (Grant No. 2012D-5006-0212), Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, China (Grant No. SKLGP2012K004) and the Sichuan Youth Science and Technology Innovation Research Team Funding Scheme, China (Grant No. 2013TD0005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wan or Lan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, T., Zou, C., Wang, L. et al. Hectorite effects on swelling and gel properties of hectorite/poly(AM/IA) nanocomposite hydrogels. Polym. Bull. 72, 1113–1125 (2015). https://doi.org/10.1007/s00289-015-1327-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1327-2

Keywords

Navigation