Skip to main content
Log in

Silane treatment of magnetite filler and its effect on the properties of magnetite-filled epoxy thin-film composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Surface modification of magnetite by 3-aminopropyltriethoxysilane coupling agent (3APTES) at different percentages (5, 10, and 20 wt%) with variable treatment times (3, 5, and 7 h) was performed. The effects of these two variables on the properties of magnetite-filled epoxy thin-film composite were investigated. Treated composites exhibited higher saturation magnetization, storage modulus and T g than untreated composites. Increasing 3APTES amount associated with increasing treatment time improved both the interfacial adhesion of magnetite filler matrix and the properties of treated composites. However, using a comparison system at a fixed treatment time, the system treated with a higher concentration of 3APTES exhibited lower saturation magnetization than that treated with a lower concentration. This result can be attributed to the thick coating on the filler surface that acted as a non-magnetic mass to the total sample volume and subsequently reduced the magnetization efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gupta N, Kashyap SC, Dube DC (2005) Microwave behaviour of substituted lithium ferrite composites in X-band. J Magn Magn Mater 288:307–314

    Article  CAS  Google Scholar 

  2. Li Y, Yim MJ, Moon KK, Zhang RW, Wong CP (2008) Development of novel, flexible, electrically conductive adhesives for next-generation microelectronics interconnect applications. In: Proceeding of ECTC Conference, pp 1272–1276

  3. Zhu J, Wei S, Ryu J, Sun L, Luo Z, Guo Z (2010) Magnetic epoxy resin nanocomposites reinforced with core-shell structured Fe@FeO nanoparticles: fabrication and property analysis. ACS Appl Mater Interfaces 2(7):2100–2107

    Article  CAS  Google Scholar 

  4. Gu H, Huang Y, Zhang X, Wang Q, Zhu J, Shao L, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 53:801–809

    Article  CAS  Google Scholar 

  5. Gu H, Tadakamalla S, Huang Y, Colorado HA, Luo Z, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites. ACS Appl Mater Interfaces 4:5613–5624

    Article  CAS  Google Scholar 

  6. Gu H, Rapole SB, Sharma J, Huang Y, Cao D, Colorado HA, Luo Z, Haldolaarachchige N, Young DP, Walters B, Wei S, Guo Z (2012) Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal. RSC Adv 2:11007–11018

    Article  CAS  Google Scholar 

  7. Guo J, Gu H, Wei H, Zhang Q, Haldolaarachchige N, Li Y, Young DP, Wei S, Guo Z (2013) Magnetite–polypyrrole metacomposites: dielectric properties and magnetoresistance behavior. J Phys Chem C 117:10191–10202

    Article  CAS  Google Scholar 

  8. Zhang W, Wang H, Zhang F, Qian Z, Su W (2010) Effect of surface modification on the magnetic properties of Ni0.5Zn0.5Fe2O4 nanoparticles. J Mater Sci Technol 26:547–551

    Article  CAS  Google Scholar 

  9. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948

    Article  CAS  Google Scholar 

  10. Zhu J, Wei S, Yadav A, Guo Z (2010) Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in situ stabilized carbon nanofibers. Polymer 51:2643–2651

    Article  CAS  Google Scholar 

  11. Hsiang HI, Chen CC (2005) Dispersion of nonaqueous Co2Z ferrite powders with titanate coupling agent and poly(vinylbutyral). Appl Surf Sci 245:252–259

    Article  CAS  Google Scholar 

  12. Saini DR, Nadkarni VM, Grover PD, Nigam KDP (1986) Dynamic mechanical, electrical and magnetic properties of ferrite filled styrene-isoprene-styrene. J Mater Sci 21:3710–3716

    Article  CAS  Google Scholar 

  13. Sun Y, Zhang Z, Wong CP (2005) Study on mono-dispersed nano-size silica by surface modification for underfill applications. J Colloid Interf Sci 292:436–444

    Article  CAS  Google Scholar 

  14. Chen WS, Chang YL, Hsiang HI, Hsu FC, Ten FS (2011) Effect of titanate coupling agent on the dielectric properties of NiZn ferrite-powders epoxy resin coatings. Ceram Int 37:2347–2352

    Article  CAS  Google Scholar 

  15. Guo Z, Perier T, Choi O, Wang Y, Hahn HT (2006) Surface functionalized alumina nanoparticles filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 16:2800–2808

    Article  CAS  Google Scholar 

  16. Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65:222–228

    Article  CAS  Google Scholar 

  17. Demjén Z, Pukánszky B, Jr JN (1999) Possible coupling reactions of functional silanes and polypropylene. Polymer 40:1763–1773

    Article  Google Scholar 

  18. Dana WM, Foil AM, Robert WH (2004) Course notes on the interpretation of infrared and Raman spectra. Wiley, Hoboken

    Google Scholar 

  19. Tee DI, Mariatti M, Azizan A, See CH, Chong KF (2007) Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composite. Compos Sci Technol 67:2584–2591

    Article  CAS  Google Scholar 

  20. Yamaura M, Camilo RL, Sampaio LC, Macêdo MA, Nakamura M, Toma HE (2004) Preparation and characterization of (3-aminopropyl) triethxysilane-coated magnetite nanoparticles. J Magn Magn Mater 279:210–217

    Article  CAS  Google Scholar 

  21. Park SS, Bernet N, Roche SDL, Hahn HT (2003) Processing of iron oxide-epoxy vinly ester nanocomposites. J Compos Mater 37:465–476

    Article  CAS  Google Scholar 

  22. Park JO, Rhee KY, Park SJ (2010) Silane treated of Fe3O4 and its effects on the magnetic and wear properties of the Fe3O4/epoxy nanocomposites. Appl Surf Sci 256:6945–6950

    Article  CAS  Google Scholar 

  23. Zhou T, Wang X, Liu XH, Lai JZ (2010) Effects of silane treatment of carboxylic-functionalized multi-walled carbon nanotubes on the thermal properties of epoxy nanocomposites. Express Polym Lett 4:217–226

    Article  CAS  Google Scholar 

  24. Kumar S, Sun LL, Caceres S, Li B, Wood W, Perugini A et al (2010) Dynamic synergy of graphitic nanoplates and multi-walled carbon nanotubes in polyetherimidenanocomposites. Nanotechnology 21:105702

    Article  CAS  Google Scholar 

  25. Ramajo LA, Cristobal AA, Botta PM, Lopez JMP, Reboredo MM, Castro MS (2009) Dielectric and magnetic of Fe3O4 epoxy composites. Compos Part A 40:388–393

    Article  Google Scholar 

  26. Guo Z, Lei K, Li Y, Ny HW, Prikhodko S, Hahn HT (2008) Fabrication and characterization of iron oxide nanoparticles reinforced vinyl-ester resin nanocomposites. Compos Sci Technol 68:1513–1520

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Universiti Sains Malaysia, and Ministry of Education, Malaysia for granting Explorating Research Grant Scheme (ERGS) used for this project (Project No. 6730109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mariatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boon, M.S., Mariatti, M. Silane treatment of magnetite filler and its effect on the properties of magnetite-filled epoxy thin-film composites. Polym. Bull. 71, 3333–3346 (2014). https://doi.org/10.1007/s00289-014-1253-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1253-8

Keywords

Navigation