Skip to main content
Log in

Electrospun polylactic acid non-woven mats incorporating silver nanoparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This research is focused on the influence of silver nanoparticles (AgNPs) on the spinnability, morphology and wetting properties of electrospun polylactic acid (PLA) non-woven mats. PLA was electrospun from a chloroform solution (4.7 % g/g) and a filament and beads morphology was obtained, the filaments having an average diameter of 1.25 μm. Interestingly, water contact angle measurements showed a contact angle of θ = 81°, an improvement relative to as-cast film which exhibited a contact angle of θ = 54°. When AgNP, of ca. 12 nm size, were incorporated at 1 % g/g relative to PLA weight, to the 4.7 % PLA-chloroform solution, and electrospun, the filaments diameter was greatly reduced to an average of 0.65 μm, and the density of polymer beads was also reduced. It is believed that the electric conductivity of silver enhanced the spinnability of the polymer solution. Strikingly, water contact angle measurements showed that the PLA/AgNP mats exhibited an angle as high θ = 134°. Increasing the solution concentration to 6.7 % g/g still produced a beads-and-filament morphology, but with larger filament diameters, probably due to an increase in solution viscosity. When AgNP were added (again at 1 % g/g relative to PLA weight), the occurrence of beads diminished and the average filament diameter decreased confirming the enhancement in spinnability by the AgNPs. Moreover, contact angles remained above 110° suggesting that the overall morphology is key to PLA’s mats hydrophobic behavior and not only filament diameter. Finally, the non-woven mats were rather amorphous, as revealed by differential scanning calorimetry and X-ray scattering, due presumably to the quenching process associated with the electrospinning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PLA:

Polylactic acid

T m :

Melting transition temperature

T c :

Crystallization transition temperature

T g :

Glass transition temperature

T cc :

Cold crystallization temperature

T dec :

Decomposition temperature

TGA:

Thermogravimetric analysis

DSC:

Differential scanning calorimetry

FTIR:

Fourier transform infrared spectroscopy

ATR:

Attenuated total reflectance

WAXS:

Wide-angle X-ray scattering

Cu Kα :

Copper radiation source

POM:

Polarized optical microscopy

λ :

Wavelength

ν :

Wavenumber

References

  1. Auras AR, Lim LT, Selke SE, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications, chap 4. Wiley, USA

    Book  Google Scholar 

  2. Dumitriu S (2011) Polymeric biomaterials, Chap 2. CRC Press, USA

    Google Scholar 

  3. Domb AJ, Kumar N, Ezra A (2011) Biodegradable polymers in clinical use and clinical development, part I. Wiley, USA

    Book  Google Scholar 

  4. Sawyer L, Grubb D, Meyers GF (2008) Polymer microscopy, Chap 1, 3rd edn. Springer, USA

    Google Scholar 

  5. Dasaria A, Quirósb J, Herreroa B, Boltesb K, García-C E, Rosala R (2012) Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles. J Membr Sci 405–406:134–140

    Article  Google Scholar 

  6. Fei Y, Wang H, Gao W, Wan Y, Fu J, Yang R (2014) Antimicrobial activity and mechanism of PLA/TP composite nanofibrous films. J Textile Inst 105:196–202

    Article  CAS  Google Scholar 

  7. Kayaci F, Umu O, Tekinay T, Uyar T (2013) Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes. J Agric Food Chem 61:3901–3908

    Article  CAS  Google Scholar 

  8. Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133:835–845

    Article  CAS  Google Scholar 

  9. Kumar A, Kumar P, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241

    CAS  Google Scholar 

  10. Wang H, Cheng M, Hu J, Wang C, Xu S, Han C (2013) Preparation and optimization of silver nanoparticles embedded electrospun membrane for implant associated infections prevention. ACS Appl Mater Interfaces 5:11014–11021

    Article  CAS  Google Scholar 

  11. Jia Y, Wu C, Dong F, Huang G, Zeng X (2013) Preparation of PCL/PVP/Ag nanofiber membranes by electrospinning method. Appl Mech Mater 268–270:580–583

    Google Scholar 

  12. Cacciotti I, Fortunati E, Puglia D, Kenny JM, Nanni F (2014) Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: morphology, thermal properties and mechanical behavior. Carbohydr Polym 103:22–31

    Article  CAS  Google Scholar 

  13. Erem AD, Ozcan G, Erem HH, Skrifvars M (2013) Antimicrobial activity of poly (l-lactide acid)/silver nanocomposite fibers. Text Res J 83:2111–2117

    Article  Google Scholar 

  14. Cooley JF (1902) Apparatus for electrically dispersing fluids. U.S. Patent No. 692631

  15. Morton WJ (1902) Method of dispersing fluids. U.S. Patent No. 705691

  16. Formhals A. (1934) Process and apparatus for preparing artificial threads. U.S. Patent No. 1975504

  17. Larrondo L, Manley J (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Polym Sci Part B Polym Phys 19:909–920

    CAS  Google Scholar 

  18. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  19. Romo-Uribe A, Arizmendi L, Romero-Guzman ME, Sepúlveda-Guzman S, Cruz-Silva R (2009) Electrospun nylon nanofibers as effective reinforcement to polyaniline membranes. ACS Appl Mater Interfaces 1:2502–2508

    Article  CAS  Google Scholar 

  20. Thern SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45(6):2017–2030

    Article  Google Scholar 

  21. Lyons J, Ko F (2005) Melt electrospinning of polymers: a review. Polymer News 30(6):170–178

    Article  CAS  Google Scholar 

  22. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238

    Article  CAS  Google Scholar 

  23. Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys 40(18):2119–2129

    Article  CAS  Google Scholar 

  24. Xie J, Hsieh Y-L (2003) Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J Mater Sci 38(10):2125–2133

    Article  CAS  Google Scholar 

  25. De Vrieze S, Westbroek P, Van Camp T, Van Langenhove L (2007) Electrospinning of chitosan nanofibrous structures: feasibility study. J Mater Sci 42(19):8029–8034

    Article  CAS  Google Scholar 

  26. Deng X-L, Sui G, Zhao M-L, Chen G-Q, Yang X-P (2007) Poly(l-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. J Biomater Sci Polymer Edn 18(1):117–130

    Article  CAS  Google Scholar 

  27. Vargas-Villagran H, Teran-Salgado E, Domínguez-Diaz M, Flores O, Campillo B, Flores A, Romo-Uribe A (2012) Non-woven membranes electrospun from polylactic acid incorporating silver nanoparticles as biocide. Mater Res Soc Symp Proc 1376. doi:10.1557/opl.2012.285

  28. Alvarado-Tenorio B, Reyes LS, Romo-Uribe A (2013) Polycaprolactone/α-alumina and hydroxyapatite-based micro- and nano-structured hybrid fibers. Mater Res Soc Symp Proc 1569

  29. Wei M, Lee J, Kang B, Mead J (2005) Preparation of core-sheath nanofibers from conducting polymer blends. Macromol Rapid Commun 26(14):1127–1132

    Article  CAS  Google Scholar 

  30. Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18(5):1027–1032

    Article  CAS  Google Scholar 

  31. Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly (glycolic acid) electrospinning. J Macromol Sci Part A Pure Appl Chem 38(12):1231–1243

    Article  Google Scholar 

  32. Yoshimoto H, Shina YM, Teraia H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082

    Article  CAS  Google Scholar 

  33. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92(3):227–231

    Article  CAS  Google Scholar 

  34. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    Article  CAS  Google Scholar 

  35. Kim TG, Park TG (2006) Surface functionalized electrospun biodegradable nanofibers for immobilization of bioactive molecules. Biotechnol Prog 22(4):1108–1113

    Article  CAS  Google Scholar 

  36. Lia L, Hashaikehb R, Arafata H (2013) Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). J Membr Sci 436:57–67

    Article  Google Scholar 

  37. Thomas V, Zhang X, Catledge SA, Vohra YK (2007) Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed Mater 2(4):224–232

    Article  CAS  Google Scholar 

  38. Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polymer Sci 59(1):37–43

    Article  CAS  Google Scholar 

  39. Teran-Salgado E, Valerio-Cardenas C, Romo-Uribe A (2011) Facile synthesis of colloidal silver nanoparticles and its incorporation into acrylic coatings. Polym Mater Sci Eng 105:910–911

    Google Scholar 

  40. Teran-Salgado E (2011) B.Sc. Thesis, Universidad Autonoma del Estado de Morelos

  41. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res 14:235–248

    Article  Google Scholar 

  42. Castillo-Perez R, Romo-Uribe A (2012) Diseño y construcción de un instrumento para medir ángulo de contacto. Memorias del XVIII Congreso Internacional Anual de la SOMIM, pp 772–780. ISBN: 978-607-95309-6-9

  43. Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly (lactic acid)s. Polymer 39:267–273

    Article  CAS  Google Scholar 

  44. Su Z, Guo W, Liu Q, Wu C (2009) Non-isothermal crystallization kinetics of poly(lactic acid)/modified carbon black composite. Polym Bull 62:629

    Article  CAS  Google Scholar 

  45. Huang SM, Hwang JJ, Liu HJ, Lin LH (2010) Crystallization behavior of poly(l-lactic acid)/montmorillonite nanocomposites. J Appl Polym Sci 117:434

    Article  CAS  Google Scholar 

  46. Gracia-Fernandez CA, Gomez-Barreiro S, Lopez-Beceiro J, Naya S, Artiaga R (2012) New approach to the double melting peak of poly(l-lactic acid) observed by DSC. J Mater Res 27:1379–1382

    Article  CAS  Google Scholar 

  47. Neppalli R, Marega C, Marigo A, Bajgai MP, Kim HY, Sinha Ray S, Causin V (2012) Electrospun nylon nanofibers for improvement of mechanical properties and for the control of the degradation behavior of poly(lactide)-based composites. J Mater Res 27:1399–1409

    Article  CAS  Google Scholar 

  48. Dominguez-Diaz M, Flores A, Cruz-Silva R, Romo-Uribe A (2012) Morphology induced hydrophobic behavior of electrospun polyhydroxyalkanoate membranes. Mater Res Soc Symp Proc 1466. doi:10.1557/opl.2012.1256

  49. Elzey S, Grassian VH (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanoparticle Res 12:1945–1958

    Article  CAS  Google Scholar 

  50. Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X (2006) Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42:2081–2087

    Article  CAS  Google Scholar 

  51. Krouse SA, Schrock RR, Cohen RE (1987) Ring-opening polymerization of cyclooctyne. Macromolecules 20(4):903–904

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H. Vargas-Villagran, E. Teran-Salgado and M. Domínguez-Díaz were supported by graduate scholarships from the Mexican Council for Science and Technology (CONACyT). Thanks are due to MICINN, Spain (grant FIS2010-18069) for generous financial support. Thanks are due to BIPEDD-2: S2010-BMD-2457 Comunidad de Madrid, Spain, for providing the facilities to carry out the X-ray diffraction experiments. This research was partially supported by CONACyT, under SEP-CONACyT CB2011 program, grant 168095. We thank Dr. R. Guardian Tapia (CIICAp-UAEM) and Mr. I. Puente Lee (F.Q.-UNAM) for help with SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Romo-Uribe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Villagran, H., Romo-Uribe, A., Teran-Salgado, E. et al. Electrospun polylactic acid non-woven mats incorporating silver nanoparticles. Polym. Bull. 71, 2437–2452 (2014). https://doi.org/10.1007/s00289-014-1200-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1200-8

Keywords

Navigation