Skip to main content
Log in

Colorimetric chemosensor for ATP based on phthalimide-appended poly(2,5-dimethoxyaniline)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

We have designed a colorimetric conjugated polymer (PDMAp) for selective ATP sensing based on poly(2,5-dimethoxyaniline) bearing phthalimide which can form hydrogen bonds with adenine. PDMAp have been synthesized via chemical oxidative polymerization with CSA and DDQ and dedoping with an aqueous ammonia solution. PDMAp was displayed to signal the colorimetric selective detection for ATP over various nucleotides such as ADP, AMP, CTP, TTP, and GTP in DMSO–water (9:1, v/v) mixture. The absorption spectral change can be attributed to a doping process of ATP to PDMAp through hydrogen bonds between phthalimide and adenine as well as electrostatic interactions between the phosphate group of ATP and the backbone of PDMAp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jose DA, Mishra S, Ghosh A, Shrivastav A, Mishra SK, Das A (2007) Colorimetric sensor for ATP in aqueous solution. Org Lett 9:1979–1982

    Article  CAS  Google Scholar 

  2. Yao Z, Li C, Shi G (2008) Optically active supramolecular complexes of water-soluble achiral polythiophenes and folic acid spectroscopic studies and sensing applications. Langmuir 24:12829–12835

    Article  CAS  Google Scholar 

  3. Secor KE, Glass TE (2004) Selective amine recognition: development of a chemosensor for dopamine and norepinephrine. Org Lett 6:3727–3730

    Article  CAS  Google Scholar 

  4. Liu Y, Dong H, Zhang W, Ye Z, Wang G, Yuan J (2010) Preparation of a novel colorimetric luminescence sensor strip for the detection of indole-3-acetic acid. Biosens Bioelectron 25:2375–2378

    Article  CAS  Google Scholar 

  5. Baumes LA, Sogo MB, Montes-Navajas P, Corma A, Garcia H (2010) A colorimetric sensor array for the detection of the date-rape drug γ-hydroxybutyric acid (GHB): a supramolecular approach. Chem Eur J 16:4489–4495

    Article  CAS  Google Scholar 

  6. Kornberg A (1988) DNA replication. J Biol Chem 263:1–4

    CAS  Google Scholar 

  7. Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406:541–544

    Article  CAS  Google Scholar 

  8. Stekhoven FS (1972) Energy transfer factor A.D (ATP synthetase) as a complex Pi–ATP exchange enzyme and its stimulation by phospholipids. Biochem Biophys Res Commum 47:7–14

    Article  CAS  Google Scholar 

  9. Higgins CF, Hiles ID, Salmond GPC (1986) A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323:448–450

    Article  CAS  Google Scholar 

  10. Bush KT, Keller ST, Nigam SK (2000) Genesis and reversal of the ischemic phenotype in epithelial cells. J Clin Invest 106:621–626

    Article  CAS  Google Scholar 

  11. Dimonte DA (1991) Mitochondrial DNA and Parkinson’s disease. Neurology 41:38–42

    Article  CAS  Google Scholar 

  12. Harkness RA, Saugstad OD (1997) The importance of the measurement of ATP depletion and subsequent cell damage with an estimate of size and nature of the market for a practicable method: a review designed for technology transfer. Scand J Clin Lab Invest 57:655–672

    Article  CAS  Google Scholar 

  13. Przedborski S, Vila S (2001) MPTP: a review of its mechanisms of neurotoxicity. Clin Neurosci Res 1:407–418

    Article  CAS  Google Scholar 

  14. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharm Rev 58:58–86

    Article  CAS  Google Scholar 

  15. Singh N, Jang DO (2011) A selective ATP chromogenic sensor for use in an indicator displacement assay. Tetrahedron Lett 52:5094–5097

    Article  CAS  Google Scholar 

  16. Marbumrung S, Wongravee K, Ruangpornvisuti V, Tumcharern G, Tuntulani T, Tomapatanaget B (2012) Discrimination of nucleotides by single fluorescence sensor under solvent-dependent recognition patterns. Sens Actuators B 171–172:969–975

    Article  Google Scholar 

  17. Ghosh A, Shrivastav A, Jose DA, Mishra SK, Chandrakanth CK, Mishra S, Das A (2008) Colorimetric sensor for triphosphates and their application as a viable staining agent for prokaryotes and eukaryotes. Anal Chem 80:5312–5319

    Article  CAS  Google Scholar 

  18. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    Article  CAS  Google Scholar 

  19. Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017

    Article  CAS  Google Scholar 

  20. Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Adv Mater 23:4215–4236

    Article  CAS  Google Scholar 

  21. Pringsheim E, Terpetschnig E, Piletsky SA, Wolfbeis OS (1999) A polyaniline with near-infrared optical response to saccharides. Adv Mater 11:865–868

    Article  CAS  Google Scholar 

  22. Huh P, Kim SC, Kim Y, Wang Y, Singh J, Kumar J, Samuelson LA, Kim BS, Jo NJ, Lee JO (2007) Optical and electrochemical detection of saccharides with poly(aniline-co-3-aminobenzeneboronic acid) prepared from enzymatic polymerization. Biomacromolecules 8:3602–3607

    Article  CAS  Google Scholar 

  23. Antony MJ, Jayakannan M (2011) Polyaniline nanoscaffolds for colorimetric sensing of biomolecules via electron transfer process. Langmuir 27:6268–6278

    Article  CAS  Google Scholar 

  24. Bossi A, Piletsky SA, Piletska EV, Righetti PG, Turner APF (2000) An assay for ascorbic acid based on polyaniline-coated microplates. Anal Chem 72:4296–4300

    Article  CAS  Google Scholar 

  25. Ray A, Richter AF, MacDiarmid AG, Epstein AJ (1989) Polyaniline: protonation/deprotonation of amine and imine sites. Synth Met 29:E151–E156

    Article  CAS  Google Scholar 

  26. MacDiarmid AG, Epstein AJ (1989) Polyanilines: a novel class of conducting polymers. Faraday Discuss Chem Soc 88:317–332

    Article  CAS  Google Scholar 

  27. Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofiber: facile synthesis and chemical sensors. J Am Chem Soc 125:314–315

    Article  CAS  Google Scholar 

  28. Ciric-Marjanovic G (2013) Recent advances in polyaniline research: polymerization mechanism, structural aspects, properties and applications. Synth Met 177:1–47

    Article  CAS  Google Scholar 

  29. Antony MJ, Jayakannan M (2011) Polyaniline nanoscaffolds for colorimetric sensing of biomolecules via electron transfer process. Langmuir 27:6268–6278

    Article  CAS  Google Scholar 

  30. Ding B, Si Y, Wang X, Yu J, Feng L, Sun G (2011) Label-free ultrasensitive colorimetric detection of copper(II) ions utilizing polyaniline/polyamide-6 nano-fiber/net sensor strips. J Mater Chem 21:13345–13353

    Article  CAS  Google Scholar 

  31. D’Aprano G, Leclerc M (1995) Synthesis and characterization of polyaniline derivatives: poly(2-alkoxyanilines) and poly (2,5-dialkoxyanilines). Chem Mater 7:33–42

    Article  Google Scholar 

  32. Huang LM, Wen TC, Gopalan A (2002) In situ UV-visible spectroelectrochemical studies on electrochromic behavior of poly(2,5-dimethoxy aniline). Synth Met 130:155–163

    Article  CAS  Google Scholar 

  33. Sajadi M, Obernhuber T, Kovalenko SA, Mosquera M, Dick B, Ernsting NP (2009) Dynamic polar solvation is reported by fluorescing 4-aminophthalimide faithfully despite H-bonding. J Phys Chem A 113:44–55

    Article  CAS  Google Scholar 

  34. Weinberger M, Berndt F, Mahrwald R, Ernsting NP, Wagenknecht HA (2013) Synthesis of 4-aminophthalimide and 2,4-diaminopyrimidine C-nucleosides as isosteric fluorescent DNA base substitutes. J Org Chem 78:2589–2599

    Article  CAS  Google Scholar 

  35. Watson JD, Crick FHC (1953) A structure for deoxyribonucleic acid. Nature 171:737–738

    Article  CAS  Google Scholar 

  36. Hino T, Kumakura T, Kuramoto N (2006) Optically active fluoro-substituted polyaniline prepared in organic media: the synthesis, chiroptical properties, and comparison with optically active non-substituted polyaniline. Polymer 47:5295–5302

    Article  CAS  Google Scholar 

  37. Norris ID, Kane-Maguire LAP, Wallace GG (2000) Electrochemical synthesis and chiroptical properties of optically active poly(o-methoxyaniline). Macromolecules 33:3237–3243

    Article  CAS  Google Scholar 

  38. Ray A, Asturias GE, Kershner DL, Richter AF, MacDiarmid AG, Epstein AJ (1989) Polyaniline: doping, structure, and derivatives. Synth Met 29:E141–E150

    Article  CAS  Google Scholar 

  39. Yuan GL, Kuramoto N (2002) Water-processable chiral polyaniline derivatives doped and intertwined with dextran sulfate: synthesis and chiroptical properties. Macromolecules 35:9773–9779

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumasa Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, A., Fukushima, Y. Colorimetric chemosensor for ATP based on phthalimide-appended poly(2,5-dimethoxyaniline). Polym. Bull. 70, 3519–3527 (2013). https://doi.org/10.1007/s00289-013-1037-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1037-6

Keywords

Navigation