Skip to main content
Log in

Poly(vinyl-pyrrolidone) assisted hydrothermal synthesis of flower-like CdS nanorings

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Well-defined CdS nanorings with flower-like morphology were synthesized by a hydrothermal method using poly(vinyl-pyrrolidone) as capping agent. The phase composition, morphology, structure, and optical properties of CdS nanorings were characterized by X-ray diffraction (XRD), scanning electron microscope, transmission electron microscopy, and UV–vis absorption spectroscopic techniques. The XRD pattern of the sample can be indexed to the cubic zinc blende phase CdS. According to the quantitative analysis of energy-dispersive spectrum, the Cd:S molar ratio of the sample is about 1:0.96. The possible formation mechanism of the CdS nanorings is proposed which is based on time-resolved experiments. Furthermore, the absorption peak of CdS nanorings is red-shifted to 523 nm in the UV–vis absorption spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Wang D, Li D, Guo L et al (2009) Template-free hydrothermal synthesis of novel three-dimensional dendritic CdS nanoarchitectures. J Phys Chem C 113:5984–5990

    Article  CAS  Google Scholar 

  2. Chen M, Kim YN, Li C et al (2008) Controlled synthesis of hyper-branched cadmium sulfide micro/nanocrystals. Cryst Growth Des 8(2):629–634

    Article  CAS  Google Scholar 

  3. Mondal SP, Dhar A, Ray SK (2007) Optical properties of CdS nanowires prepared by dc electrochemical deposition in porous alumina template. Mater Sci Semiconduct Process 10:185–193

    Article  CAS  Google Scholar 

  4. Banerjee R, Jayakrishnan R, Ayyub P (2000) Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J Phys: Condens Matter 12:10647

    Article  CAS  Google Scholar 

  5. Seoudi R, Shabaka A, Eisa WH et al (2010) Effect of the prepared temperature on the size of CdS and ZnS nanoparticles. Phys B 405:919–924

    Article  CAS  Google Scholar 

  6. Zhang WH, Shi JL, Chen HR et al (2001) Synthesis and characterization of nanosized ZnS confined in ordered mesoporous silica. Chem Mater 13:648–654

    Article  CAS  Google Scholar 

  7. Zhang H, Liu G, Wan X et al (2009) Synthesis and characterization of single-crystalline CdS nanorods prepared by γ-irradiation. J Mater Res 24:227–236

    Article  CAS  Google Scholar 

  8. Wang Y, Tang Z, Kotov NA (2005) Bioapplication of nanosemiconductors. Mater Today 8:20–31

    Article  Google Scholar 

  9. Puangmali T, Califano M, Harrison P (2008) Interband and intraband optical transitions in InAs nanocrystal quantum dots: a pseudopotential approach. Phys Rev B 78(24):1–10

    Article  Google Scholar 

  10. Balberg I (2009) Electrical transport mechanisms in ensembles of silicon quantum dots. Phys Status Solidi C 5:3771–3775

    Article  Google Scholar 

  11. Jing M, Gai H, Wang Z (2010) Poly (vinyl alcohol)-assisted solvothermal growth of CdS dumbbells and necklaces. Polym Bull 64:413–419

    Article  CAS  Google Scholar 

  12. Cao HQ, Wang GZ, Zhang SC et al (2006) Growth and optical properties of wurtzite-type CdS nanocrystals. Inorg Chem 45:5103–5108

    Article  CAS  Google Scholar 

  13. Fan L, Guo R (2009) Controlled synthesis of pyramid-aggregated sphere-like cadmium sulfide in the presence of a polymer. Cryst Growth Des 9(4):1677–1682

    Article  CAS  Google Scholar 

  14. Dongre JK, Ramrakhiani M (2009) Synthesis of flower-like CdS nanostructured films and their application in photoelectrochemical solar cells. J Alloys Compd 487:653–658

    Article  CAS  Google Scholar 

  15. Nan YX, Chen F, Yang LG, Chen HZ (2010) Electrochemical synthesis and charge transport properties of CdS nanocrystalline thin films with coniferlike structure. J Phys Chem C 114:11911–11917

    Article  CAS  Google Scholar 

  16. Chen F, Zhou R, Yang L et al (2008) Large-scale and shape-controlled syntheses of three-dimensional CdS nanocrystals with flowerlike structure. J Phys Chem C 112:1001–1007

    Article  CAS  Google Scholar 

  17. Xiong S, Xi B, Qian Y (2010) CdS hierarchical nanostructures with tunable morphologies: preparation and photocatalytic properties. J Phys Chem C 114:14029–14035

    Article  CAS  Google Scholar 

  18. Tong H, Zhu YJ (2006) Synthesis of CdS nanocrystals based on low-temperature thermolysis of one single-source organometallic precursor. Nanotechnology 17:845–851

    Article  CAS  Google Scholar 

  19. Bandarnayake RJ, Wen GW, Lin JY et al (1995) Structural phase behavior in II–IV semiconductor nanoparticles. Appl Phys Lett 67:831–833

    Article  Google Scholar 

  20. Lin Y, Zhang J, Sargent EH et al (2002) Photonic pseudo-gap-based modification of photoluminescence from CdS nanocrystal satellites around polymer microspheres in a photonic crystal. Appl Phys Lett 81(17):3134–3136

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 50903045) and the Provincial Natural Science Foundation (No. Z2005F03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, G., Zhang, H., Li, J. et al. Poly(vinyl-pyrrolidone) assisted hydrothermal synthesis of flower-like CdS nanorings. Polym. Bull. 68, 2061–2069 (2012). https://doi.org/10.1007/s00289-012-0717-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0717-y

Keywords

Navigation