Skip to main content
Log in

Morphological characterization of branched PP under stretching

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

An effective approach to achieve high-melt strength polymer is to add long chain branches onto backbone species using gamma radiation. Grafting and branching result from macroradicals combinations during the irradiation process. Polypropylene films were prepared starting with irradiation process of the pellets with a 60Co source at doses of 5, 12.5, and 20 kGy under acetylene to improve melt strength and drawability. After irradiation, polypropylene films were obtained by compression molding, at 190 °C and pressure of 80 bar, and dive into a water tank at 23 °C, which generally favors the formation of an amorphous phase. The thin films were stretched at 170 °C using a universal testing machine. Film surface morphology and the thermal properties, were analyzed, using atomic force microscopy, scanning electron microscopy and differential scanning calorimetry. We had a different molecular structure that requested the study of their micro and nanostructure. The results showed some evidence of fibrillar structures containing crystallites and gel formation. Fibrils oriented along the stretching direction were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borsig E, Duin M, Gotsis AD, Picchioni F (2008) Long chain branching on linear polypropylene by solid state reactions. Eur Polym J 44:200–212

    Article  CAS  Google Scholar 

  2. Otaguro H, Artel BWH, Parra DF, Cardoso ECL, Lima LFCP, Lugao AB (2004) Polypropylene in the presence of trifunctional monomers and their influence in PP morphology. Polímeros: Ciência e Tecnologia 14(2):99–104

    CAS  Google Scholar 

  3. McCallum TJ, Kontopoulou M, Park CB, Muliawan EB, Hatzikiriakos SG (2007) The rheological and physical properties of linear and branched polypropylene blends. Polym Eng Sci 47(7):1133–1140

    Article  CAS  Google Scholar 

  4. Rätzsch M, Arnold M, Borsig E, Bucka H, Reichelt N (2002) Radical reactions on polypropylene in the solid state. Prog Polym Sci 27:1195–1282

    Article  Google Scholar 

  5. Yoshiga A, Otaguro H, Lima LFCP, Artel BWH, Parra DF, Bueno JR, Shinzato R, Farrah M, Lugao AB (2007) Study of polypropylene/polybutene blends modified by gamma irradiation and (high melt strength polypropylene)/polybutene blends. Nucl Instrum Methods Phys Res B 265:130–134

    Article  CAS  Google Scholar 

  6. Zhang XC, Butler MF, Cameron RE (1999) The relationships between morphology, irradiation and the ductile-brittle transition of isotactic polypropylene. Polym Int 48:1173–1178

    Article  CAS  Google Scholar 

  7. Stojanovic Z, Kacarevic-Popovic Z, Galovic S, Milicevic D, Suljovrujic E (2005) Crystallinity changes and melting behavior of the uniaxially oriented iPP exposed to high doses of gamma radiation. Polym Degrad Stab 87:279–286

    Article  CAS  Google Scholar 

  8. Abiona A, Osinkolu AG (2010) Gamma-irradiation induced property modification of polypropylene. Int J Phys Sci 5(7):960–967

    Google Scholar 

  9. Yoshiga A, Otaguro H, Parra DF, Lima LFCP, Lugao AB (2009) Controlled degradation and crosslinking of propylene induced by gamma radiation and acetylene. Polym Bull 63:397–409

    Article  CAS  Google Scholar 

  10. Cheng S, Phillips E, Parks L (2010) Processability improvement of polyolefins through radiation-induced branching. Radiat Phys chem 79:329–334

    Article  CAS  Google Scholar 

  11. Valenza V, Piccarolo S, Spadaro G (1999) Influence of morphology and chemical structure on the inverse response of polypropylene to gamma radiation under vacuum. Polymer 40:835–841

    Article  CAS  Google Scholar 

  12. Otaguro H, Lima LFCP, Parra DF, Lugao AB, Chinelatto MA, Canevarolo SV (2010) High-energy radiation forming chain scission and branching in polypropylene. Radiat Phys chem 79:318–324

    Article  CAS  Google Scholar 

  13. Hill T, Whittaker AK (2005) Encyclopedia of polymer science and technology. In: Radiation chemistry of polymers. Wiley, New York, pp 15–16

  14. Spadaro G, Valenza A (2000) Calorimetric analysis of an isotactic polypropylene gamma-irradiated in vacuum. J Therm Anal Calorim 61:589–596

    Article  CAS  Google Scholar 

  15. Suljovrujic E (2009) Gel production, oxidative degradation and dielectric properties of isotactic polypropylene irradiated under various atmospheres. Polym Degrad Stab 94:521–526

    Google Scholar 

  16. Muke S, Ivanov I, Kao N, Bhattacharya SN (2001) The melt extensibility of polypropylene. Polym Int 50:515–523

    Article  CAS  Google Scholar 

  17. Zuo F, Keum JK, Chen X, Hsiao B, Chen H, Lai SY, Wevers R, Li J (2007) The role of interlamellar chain entanglement in deformation-induced structure changes during uniaxial stretching of isotactic polypropylene. Polymer 48:6867–6880

    Article  CAS  Google Scholar 

  18. Dasari A, Rohrmann J, Misra RDK (2003) Microstructural aspects of surface deformation processes and fracture of tensile strained high isotactic polypropylene. Mater Sci Eng A358:372–383

    CAS  Google Scholar 

  19. Dvir H, Jopp J, Gottlieb M (2006) Estimation of polymer-surface interfacial interaction strength by a contact AFM technique. J Colloid Interface Sci 304:58–66

    Article  CAS  Google Scholar 

  20. Koike Y, Cakmak M (2006) The influence of molten fraction on the uniaxial deformation behavior of polypropylene: real time mechano-optical and atomic force microscopy observations. J Polym Sci: Part B: Polym Phys 44:925–941

    Article  CAS  Google Scholar 

  21. Hosier IL, Alamo RG, Lin JS (2004) Lamellar morphology of random metallocene propylene copolymers studied by atomic force microscopy. Polymer 45:3441–3455

    Article  CAS  Google Scholar 

  22. Tabatabaei SH, Carreu PJ, Ajji A (2009) Structure and properties of MDO stretched polypropylene. Polymer 50:3981–3989

    Article  CAS  Google Scholar 

  23. Tabatabaei SH, Carreu PJ, Ajji A (2009) Effect of processing on the crystalline orientation, morphology, and mechanical properties of polypropylene cast films and microporous membrane formation. Polymer 50:4228–4240

    Article  CAS  Google Scholar 

  24. Oliani WL, Lima LFCP, Dias DB, Parra DF, Lugao AB (2010) Study of the morphology, thermal and mechanical properties of irradiated isotactic polypropylene films. Radiat Phys Chem 79:325–328

    Article  CAS  Google Scholar 

  25. Suljovrujic E (2009) The influence of molecular orientation on the crosslinking/oxidative behaviour of iPP exposed to gamma radiation. Eur Polym J 45:2068–2078

    Article  CAS  Google Scholar 

  26. ASTM D 1238-04—Standard test method for melt flow rates of thermoplastics by extrusion plastometer

  27. Oliani WL, Parra DF, Lugao AB (2010) UV stability of HMSPP (high melt strength polypropylene) obtained by radiation process. Radiat Phys Chem 79:383–387

    Article  CAS  Google Scholar 

  28. ASTM D 882-09—Standard test method for tensile properties of thin plastic sheeting

  29. ASTM D 3418-08—Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry

  30. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, vol 1, 4th edn. Wiley Interscience, New York

  31. Lugao AB, Noda L, Cardoso ECL, Hustzler B, Tokumoto S, Mendes ANF (2002) Temperature rising elution fractionation, infra red and rheology study on gamma irradiated HMSPP. Radiat Phys Chem 63:509–512

    Article  CAS  Google Scholar 

  32. Koike Y, Cakmak M (2003) Real time development of structure in partially molten state stretching of PP as detected by spectral birefringence technique. Polymer 44:4249–4260

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP proc.# 520015/2006-1), Centre of Science and Technology of Materials—CCTM/IPEN for microscopy analysis (SEM), Laboratório de Filmes Finos do Instituto de Física da Universidade de São Paulo, for the SPM facility (FAPESP proc. #95/5651-0), Eleosmar Gasparin for DSC analysis and Companhia Brasileira de Esterilização (CBE) for irradiating the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. L. Oliani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliani, W.L., Parra, D.F., Lima, L.F.C.P. et al. Morphological characterization of branched PP under stretching. Polym. Bull. 68, 2121–2130 (2012). https://doi.org/10.1007/s00289-012-0708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0708-z

Keywords

Navigation