Skip to main content
Log in

Preparation of Cu/OMMT/LLDPE nanocomposites and synergistic effect study of two different nano materials in polymer matrix

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Cu/OMMT (organo-montmorillonite)/LLDPE (linear low-density polyethylene) nanocomposites were prepared via melt mixing combined with melt extruding process. X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectra, scanning electron microscope (SEM), and transmission electron microscopy (TEM) were employed to characterize the resultant nanocomposites. The results showed that the OMMT layers were exfoliated and the nano-Cu particles were distributed uniformly in the polymer matrix. And the introduction of nanofiller into LLDPE matrix had little effect on the crystallinity of the polymer. The salt spray tests showed that OMMT and nano-Cu could improve the anticorrosion properties of LLDPE matrix, respectively. And the coexistence of OMMT and nano-Cu in Cu/OMMT/LLDPE nanocomposites could produce a synergistic effect on enhancing the anticorrosion properties. Furthermore, the co-incorporation of OMMT and nano-Cu into the polymer matrix also increased the thermal-oxidative stability and mechanical properties of LLDPE matrix significantly, as compared with the Cu/LLDPE and OMMT/LLDPE nanocomposites due to the synergistic effect. The bactericidal properties evaluation showed that the bactericidal ability of Cu/OMMT/LLDPE increases with nano-Cu content effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lu HD, Hu Y, Li M, Chen ZY, Fan WC (2006) Structure characteristics and thermal properties of silane-grafted-polyethylene/clay nanocomposite prepared by reactive extrusion. Compos Sci Technol 66:3035–3039

    Article  CAS  Google Scholar 

  2. Li P, Tan TC, Lee JY (1997) Corrosion protection of mild steel by electroactive polyaniline coatings. Synth Met 88:237–242

    Article  CAS  Google Scholar 

  3. Chow WS, Mohd Ishak ZA (2007) Mechanical, morphological and rheological properties of polyamide 6/organo-montmorillonite nanocomposites. Express Polym Lett 1:77–83

    Article  CAS  Google Scholar 

  4. Lee SY, Kang IA, Doh GH, Kim WJ, Kim JS, Yoon HG, Wu Q (2008) Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nanocomposites. Express Polym Lett 2:78–87

    Article  CAS  Google Scholar 

  5. Mojumdar SC, Raki L, Mathis N, Schimdt K, Lang S (2006) Thermal, spectral and AFM studies of calcium silicate hydrate-polymer nanocomposite material. Polym Bull 85:119–124

    CAS  Google Scholar 

  6. Chieng BW, Ibrahim NA, Wan Yunus WMZ (2010) Effect of organo-modified montmorillonite on poly(butylenes succinate)/poly(butylene adipate-co-terephthalate) nanocomposites. Express Polym Lett 4:404–414

    Article  CAS  Google Scholar 

  7. Yu YH, Yeh JM, Liou SJ, Chang YP (2004) Organo-soluble polyimide (TBAPP–OPDA)/clay nanocomposite materials with advanced anticorrosive properties prepared from solution dispersion technique. Acta Mater 52:475–486

    Article  CAS  Google Scholar 

  8. Yeh J-M, Liou S-J, Lin C-Y, Cheng C-Y, Chang Y-W, Lee K-R (2002) Anticorrosively enhanced PMMA–clay nanocomposite materials with quaternary alkylphosphonium salt as an intercalating agent. Chem Mater 14:154–161

    Article  CAS  Google Scholar 

  9. Yeh J-M, Liou S-J, Lai M-C, Chang Y-W, Huang C-Y, Chen C-P, Jaw J-H, Tsai T-Y, Yu Y-H (2004) Comparative studies of the properties of poly(methyl methacrylate)-clay nanocomposite materials prepared by in situ emulsion polymerization and solution dispersion. J Appl Polym Sci 94:1936–1946

    Article  CAS  Google Scholar 

  10. Yeh J-M, Liou S-J, Lin C-G, Chang Y-P, Yu Y-H, Cheng C-F (2004) Effective enhancement of anticorrosive properties of polystyrene by polystyrene-clay nanocomposite materials. J Appl Polym Sci 92:1970–1976

    Article  CAS  Google Scholar 

  11. Yeh J-M, Chen C-L, Chen Y-C, Ma C-Y, Huang H-Y, Yu Y-H (2004) Enhanced corrosion prevention effect of polysulfone-clay nanocomposite materials prepared by solution dispersion. J Appl Polym Sci 92:631–637

    Article  CAS  Google Scholar 

  12. Yeh J-M, Huang H-Y, Chen C-L, Su W-F, Yu Y-H (2006) Siloxane-modified epoxy resin–clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surf Coat Technol 200:2753–2763

    Article  CAS  Google Scholar 

  13. Yeh J-M, Chin C-P, Chang S (2003) Enhanced corrosion protection coatings prepared from soluble electronically conductive polypyrrole-clay nanocomposite materials. J Appl Polym Sci 88:3264–3272

    Article  CAS  Google Scholar 

  14. Franey PH, Sutton DM (2006) Static intercept* technology: a new packaging platform for corrosion and ESD protection. Bell Labs Tech J 11:137–146

    Article  Google Scholar 

  15. Yuan XH, Li XH, Zhu E, Hu J, Cao SS, Sheng WC (2010) Synthesis and properties of silicone/montmorillonite nanocomposites by in situ intercalative polymerization. Carbohydr Polym 79:373–379

    Article  CAS  Google Scholar 

  16. Sivudu KS, Thomas S, Shailaja D (2007) Synthesis and characterization of poly (4vp-co-dvb)/montmorillonite nanocomposites by in situ intercalative polymerization. Appl Clay Sci 37:185–192

    Article  CAS  Google Scholar 

  17. Zheng HM, Liu XH, Yang SB, Wang X (2005) New approach for preparation of ultrafine Cu particles and shell/core compounds of Cu/CuO and Cu/Cu2O. J Mater Sci 40:1039–1041

    Article  CAS  Google Scholar 

  18. Ouhadi VR, Yong RN (2003) Impact of clay microstructure and mass absorption coefficient on the quantitative mineral identification by XRD analysis. Appl Clay Sci 23:141–148

    Article  CAS  Google Scholar 

  19. Xu J, Li RKY, Xu Y, Li L, Meng YZ (2005) Preparation of poly(propylene carbonate)/organo-vermiculite nanocomposites via direct melt intercalation. Eur Polym J 41:881–888

    Article  CAS  Google Scholar 

  20. Argun ME, Dursun S (2008) A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresource Technol 99:2516–2527

    Article  CAS  Google Scholar 

  21. Kornilov VM, Lachinov AN (2003) STM surface modification of the Si–SiO2-polymer system. Microelectron Eng 69:399–404

    Article  CAS  Google Scholar 

  22. Lemić J, Tomašević-Čanović M, Djuričić M, Stanić T (2005) Surface modification of sepiolite with quaternary amines. J Colloid Interface Sci 292:11–19

    Article  Google Scholar 

  23. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of nanobiocomposites of poly(3-hydroxybutyrate) and layered silicates. J Appl Polym Sci 108:2787–2801

    Article  CAS  Google Scholar 

  24. Park JH, Jana SC (2003) The relationship between nano- and micro-structures and mechanical properties in PMMA–epoxy–nanoclay composites. Polymer 44:2091–2210

    Article  CAS  Google Scholar 

  25. Xue B, Jiang YS, Li FF, Xia MS, Sun MM, Liu DR, Zhang XG, Yu LX (2010) Hydrophobic modification of Dickite and salt spray test study on LLDPE/modified Dickite composite. J Appl Polym Sci 116:3408–3488

    Google Scholar 

  26. Morawiec J, Pawlak A, Slouf M, Galeski A, Piorkowska E, Krasnikowa N (2005) Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites. Eur Polym J 41:1115–1122

    Article  CAS  Google Scholar 

  27. Chmielová M, Seidlerová J, Weiss Z (2003) X-ray diffraction phase analysis of crystalline copper corrosion products after treatment in different chloride solutions. Corros Sci 45:883–889

    Article  Google Scholar 

  28. Tang LN, Wang FP (2008) Electrochemical evaluation of allyl thiourea layers on copper surface. Corros Sci 50:1156–1160

    Article  CAS  Google Scholar 

  29. Chow WS (2007) Water absorption of epoxy glass fiber organo-montmorillonite nanocomposites. Express Polym Lett 1:104–108

    Article  CAS  Google Scholar 

  30. Abacha N, Kubouchi M, Tsuda K, Sakai T (2007) Performance of epoxy-nanocomposite under corrosive environment. Express Polym Lett 1:364–369

    Article  CAS  Google Scholar 

  31. Abacha N, Kubouchi M, Sakai T (2009) Diffusion behavior of water in polyamide 6 organoclay nanocomposites. Express Polym Lett 3:245–255

    Article  CAS  Google Scholar 

  32. Yeh JM, Kuo TH, Huang HJ, Chang KC, Chang MY, Yang JC (2007) Preparation and characterization of poly(o-methoxyaniline)/Na+–MMT clay nanocomposite via emulsion polymerization: electrochemical studies of corrosion protection. Eur Polym J 43:1624–1634

    Article  CAS  Google Scholar 

  33. Yu TS, Lin JP, Xu JF, Ding WW (2005) Nanocomposites of vinyl chloride–acrylonitrile copolymer and silica. J Polym Sci Pol Phys 43:3127–3134

    Article  CAS  Google Scholar 

  34. Dietsche F, Mulhaupt R (1999) Thermal properties and flammability of acrylic nanocomposites based upon organophilic layered silicates. Polym Bull 43:395–402

    Article  CAS  Google Scholar 

  35. Choi YS, Choi MH, Wang KH (2001) Synthesis of exfoliated PMMA/Na-MMT nanocomposites via soap-free emulsion polymerization. Macromolecules 34:8978–8985

    Article  CAS  Google Scholar 

  36. Krikorian V, Kurian M (2002) Polypeptide-based nanocomposite: structure and properties of poly(l-lysine)/Na+-montmorillonite. J Polym Sci Pol Phys 40:2579–2586

    Article  CAS  Google Scholar 

  37. Tyan H, Leu C, Wei K (2001) Effect of reactivity of organics-modified montmorillonite on the thermal and mechanical properties of montmorillonite/polyimide nanocomposites. Chem Mater 13:222–226

    Article  CAS  Google Scholar 

  38. Knill CJ, Kennedy JF, Mistry J (2004) Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings. Carbohydr Polym 55:65–76

    Article  CAS  Google Scholar 

  39. Dan ZG, Ni HW, Xu BF, Xiong J, Xiong PY (2005) Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions. Thin Solid Films 492:93–100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (grant No.50574043 and 40772028) and the supporting of Project 985-Automotive Engineering of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinshan Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, B., Li, F., Xing, Y. et al. Preparation of Cu/OMMT/LLDPE nanocomposites and synergistic effect study of two different nano materials in polymer matrix. Polym. Bull. 67, 1463–1481 (2011). https://doi.org/10.1007/s00289-011-0466-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0466-3

Keywords

Navigation