Skip to main content
Log in

Controlled release of 5-aminosalicylic acid from a new pH responsive polymer derived from tamarind seed polysaccharide, acrylic acid, and polyamidoamine

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new pH-responsive polymer (TKP–AA–PAA) was synthesized from the combination of tamarind kernel powder (TKP), acrylic acid (AA), and polyamidoamine (PAA) which was utilized for controlled release of 5-aminosalicylic acid (5-ASA) in buffer medium. The network structure of TKP–AA–PAA was obtained by irradiating the mixture of TKP, AA, and PAA in different proportion in presence of 2,2-dimethoxy-2-phenyl acetophenone as a photoinitiator. The dynamic and equilibrium swelling properties of the polymeric materials were studied as a function of pH and time in different buffer solutions similar to that of gastric and intestinal fluids. The controlled release kinetics of 5-ASA in simulated body fluid showed a Fickian diffusion behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Langer R, Peppas NA (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 49:2990–3006

    Article  CAS  Google Scholar 

  2. Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:187–206

    Article  CAS  Google Scholar 

  3. Devine DM, Higginbotham CL (2005) Synthesis and characterisation of chemically crosslinked N-vinyl pyrrolidinone (NVP) based hydrogels. Eur Polym J 41:1272–1279

    Article  CAS  Google Scholar 

  4. Choi KY, Lee S, Park K, Kim K, Park JH, Kwon IC, Jeong SY (2008) Preparation and characterization of hyaluronic acid-based hydrogel nanoparticles. J Phys Chem Solids 69:1591–1595

    Article  CAS  Google Scholar 

  5. Dayananda K, He C, Park DK, Park TG, Lee DS (2008) pH- and temperature-sensitive multiblock copolymer hydrogels composed of poly(ethylene glycol) and poly(amino urethane). Polymer 49:4968–4973

    Article  CAS  Google Scholar 

  6. García DM, Escobar JL, Noa Y, Bada N, Hernáez E, Katime I (2004) Timolol maleate release from pH-sensible poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogels. Eur Polym J 40:1683–1690

    Article  Google Scholar 

  7. Tanaka Y, Gong JP, Osada Y (2005) Novel hydrogels with excellent mechanical performance. Prog Polym Sci 30:1–9

    Article  CAS  Google Scholar 

  8. Sun JX, Luo YF, Peng H, Han ZW (2008) Design, synthesis and characterization of a novel pH-sensitive hydrogel. Chin Chem Lett 19:1475–1478

    Article  CAS  Google Scholar 

  9. Kost J, Langer R (2001) Responsive polymeric delivery systems. Adv Drug Deliv Rev 46:125–148

    Article  CAS  Google Scholar 

  10. Coviello T, Palleschi A, Grassi M, Matricardi P, Bocchinfuso G, Alhaique F (2005) Scleroglucan: a versatile polysaccharide for modified drug delivery. Molecules 10:6–33

    Article  CAS  Google Scholar 

  11. Francis Suh J-K, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    Article  CAS  Google Scholar 

  12. Xiao C, Li H, Gao Y (2009) Preparation of fast pH-responsive ferric carboxymethylcellulose/poly(vinyl alcohol) double-network microparticles. Polym Int 58:112–115

    Article  CAS  Google Scholar 

  13. Ferruti P, Marchisio MA, Duncan R (2002) Poly(amido-amine)s: biomedical applications. Macromol Rapid Commun 23:332–355

    Article  CAS  Google Scholar 

  14. Bignotti F, Sozzani P, Ranucci E, Ferruti P (1994) NMR studies, molecular characterization, and degradation behavior of poly(amido amine)s. 1. Poly(amido amine) deriving from the polyaddition of 2-methylpiperazine to 1,4-bis(acryloyl)piperazine. Macromolecules 27:7171–7178

    Article  CAS  Google Scholar 

  15. Ferruti P, Manzoni S, Richardson SCW, Duncan R, Pattrick NG, Mendichi R, Casolaro M (2000) Amphoteric linear poly(amido-amine)s as endosomolytic polymers: correlation between physicochemical and biological properties. Macromolecules 33:7793–7800

    Article  CAS  Google Scholar 

  16. Kosmala JD, Henthorn DB, Brannon-Peppas L (2000) Preparation of interpenetrating networks of gelatin and dextran as degradable biomaterials. Biomaterials 21:2019–2023

    Article  CAS  Google Scholar 

  17. Richardson SCW, Pattrick NG, Man YKS, Ferruti P, Duncan R (2001) Poly(amidoamine)s as potential nonviral vectors: ability to form interpolyelectrolyte complexes and to mediate transfection in vitro. Biomacromolecules 2:1023–1028

    Article  CAS  Google Scholar 

  18. Pattrick NG, Richardson SCW, Casolaro M, Ferruti P, Duncan R (2001) Poly(amidoamine)-mediated intracytoplasmic delivery of ricin A-chain and gelonin. J Control Release 77:225–232

    Article  CAS  Google Scholar 

  19. Tanzi MC, Levi M (1989) Heparinizable segmented polyurethanes containing poly-amidoamine blocks. J Biomed Mater Res 23:863–881

    Article  CAS  Google Scholar 

  20. Wiwattanapatape R, Lomlim L, Saramunee K (2003) Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J Control Release 88:1–9

    Article  Google Scholar 

  21. Nakanishi K (1966) Infrared absorption spectroscopy practical, 4th edn. Nankodo Company Ltd., Tokyo, pp 142–143

    Google Scholar 

  22. Borzacchiello A, Ambrosio L, Netti PA, Nicolais L, Peniche C, Gallardo A, Roman SJ (2001) Chitosan-based hydrogels: synthesis and characterization. J Mater Sci Mater Med 12:861–864

    Article  CAS  Google Scholar 

  23. Xue W, Champ S, Huglin MB, Jones TGJ (2004) Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic acid. Eur Polym J 40:467–476

    Article  CAS  Google Scholar 

  24. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  Google Scholar 

  25. Firestone BA, Siegel RA (1991) Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels. J Appl Polym Sci 43:901–914

    Article  CAS  Google Scholar 

  26. Kim B, Flamme KL, Peppas NA (2003) Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J Appl Polym Sci 89:1606–1613

    Article  CAS  Google Scholar 

  27. Brannon-Peppas L, Peppas NA (1990) Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials 11:635–644

    Article  CAS  Google Scholar 

  28. Ghandehari H, Kopeckova P, Kopecek J (1997) In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials 18:861–872

    Article  CAS  Google Scholar 

  29. Bajpai SK, Tankhiwale R (2006) Investigation of dynamic release of vitamin B2 from calcium alginate/chitosan multilayered beads: part II. React Funct Polym 66:1565–1574

    Article  CAS  Google Scholar 

Download references

Acknowledgment

R.K.D. is thankful to Professor A. R. Ray for useful discussions. Kind help of CIF, BIT, Mesra, is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Dey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, R.K., Tiwary, G.S., Patnaik, T. et al. Controlled release of 5-aminosalicylic acid from a new pH responsive polymer derived from tamarind seed polysaccharide, acrylic acid, and polyamidoamine. Polym. Bull. 66, 583–598 (2011). https://doi.org/10.1007/s00289-010-0294-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0294-x

Keywords

Navigation