Skip to main content
Log in

Nucleating agent induced impact fracture behavior change in PP/POE blend

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work was focused on the impact fracture behavior of polypropylene/ethylene-octene copolymer (PP/POE) blends with and without nucleating agent (NA). The crystallization morphologies of injection-molded-bar were analyzed by polarization optical microscope and the impact-fractured surface morphologies were characterized carefully through scanning electronic microscope. Our results show that the addition of 0.2 wt% α/or β-NA induces the great decrease of spherulites diameters companioned with the dramatically enhancement of PP/POE blend toughness. Virgin PP shows the typical brittle-fractured characteristic during the whole fracture process. PP/POE shows the less-ductile fracture feature with multiple-craze formation. The addition of NA into PP/POE blend changes the fractured surface feature from predominantly multiple-craze to predominantly shear yielding or shear yielding involving materials cavitations and second-crack re-initiation, respectively, indicating the change from brittle-like fracture mode to ductile fracture mode. The transformation of β → α during the impact process for β-NA nucleated samples has been observed; however, such transformation is suppressed by the presence of POE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tam WY, Cheung T, Li RKY (1996) An investigation on the impact fracture characteristics of EPR toughened polypropylene. Polym Test 15:363–380

    Article  CAS  Google Scholar 

  2. D’Orazio L, Mancarella C, Martuscelli E, Cecchin G, Corrieri R (1999) Isotactic polypropylene/ethylene-co-propylene blends: effects of the copolymer microstructure and content on rheology, morphology and properties of injection moulded samples. Polymer 40:2745–2757

    Article  CAS  Google Scholar 

  3. Silva da ALN, Coutinho FMB (1996) Some properties of polymer blends based on EPDM/PP. Polym Test 15:45–52

    Article  Google Scholar 

  4. Van der Wal A, Nijhof R, Gaymans RJ (1999) Polypropylene–rubber blends: 2. The effect of the rubber content on the deformation and impact behaviour. Polymer 40:6031–6044

    Article  Google Scholar 

  5. Premphet K, Paecharoenchai W (2002) Polypropylene/metallocene ethylene–octene copolymer blends with a bimodal particle size distribution: mechanical properties and their controlling factors. J Appl Polym Sci 85:2412–2418

    Article  CAS  Google Scholar 

  6. Borggreve RJM, Gaymans RJ, Schuijer J, Ingen Housz JF (1987) Brittle–tough transition in nylon–rubber blends: effect of rubber concentration and particle size. Polymer 28:1489–1496

    Article  CAS  Google Scholar 

  7. Jiang W, An LJ, Jiang BZ (2001) Brittle–tough transition in elastomer toughening thermoplastics: effects of the elastomer stiffness. Polymer 42:4777–4780

    Article  CAS  Google Scholar 

  8. Jiang W, Wang ZG, Liu CH, Liang HJ, Jiang BZ, Wang XH, Zhang HX (1997) Effect of γ-irradiation on brittle–tough transition of PBT/EPDM blends. Polymer 38:4275–4277

    Article  CAS  Google Scholar 

  9. Jang BZ, Uhlmann DR, Vander Sande JB (1985) The rubber particle size dependence of crazing in polypropylene. Polym Eng Sci 25:643–651

    Article  CAS  Google Scholar 

  10. Kim DS, Cho K, Kim JK, Park CE (1996) Effects of particle size and rubber content on fracture toughness in rubber-modified epoxies. Polym Eng Sci 36:755–768

    Article  CAS  Google Scholar 

  11. Van der Wal A, Gaymans RJ (1999) Polypropylene–rubber blends: 5. Deformation mechanism during fracture. Polymer 40:6067–6075

    Article  Google Scholar 

  12. Wang Y, Fu Q, Li QJ, Zhang G, Shen KZ, Wang YZ (2002) Ductile–brittle-transition phenomenon in polypropylene/ethylene–propylene–diene rubber blends obtained by dynamic packing injection molding: a new understanding of the rubber-toughening mechanism. J Polym Sci Part B Polym Phys 40:2086–2097

    Article  CAS  Google Scholar 

  13. Wang Y, Zhang Q, Na B, Du RN, Fu Q, Shen KZ (2003) Dependence of impact strength on the fracture propagation direction in dynamic packing injection molded PP/EPDM blends. Polymer 44:4261–4271

    Article  CAS  Google Scholar 

  14. Guerrica-Echevarría G, Eguiazábal JI, Nazábal J (2007) Influence of compatibilization on the mechanical behavior of poly(trimethylene terephthalate)/poly(ethylene–octene) blends. Eur Polym J 43:1027–1037

    Article  Google Scholar 

  15. Bucknall CB, Smith RR (1965) Stress-whitening in high-impact polystyrenes. Polymer 6:437–446

    Article  CAS  Google Scholar 

  16. Newman S, Strella S (1965) Stress–strain behavior of rubber-reinforced glassy polymers. J Appl Polym Sci 9:2297–2310

    Article  CAS  Google Scholar 

  17. Jiang W, Yuan Q, An LJ, Jiang BZ (2002) Effect of cavitations on brittle–ductile transition of particle toughened thermoplastics. Polymer 43:1555–1558

    Article  CAS  Google Scholar 

  18. Wu S (1985) Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer 26:1855–1863

    Article  CAS  Google Scholar 

  19. Van der Wal A, Mulder JJ, Oderkerk J, Gaymans RJ (1998) Polypropylene–rubber blends: 1. The effect of the matrix properties on the impact behaviour. Polymer 39:6781–6787

    Article  Google Scholar 

  20. Jiang W, Yu DH, Jiang BZ (2004) Brittle–ductile transition of particle toughened polymers: influence of the matrix properties. Polymer 45:6427–6430

    Article  CAS  Google Scholar 

  21. Grein C, Plummer CJG, Kausch HH, Germain Y, Béguelin Ph (2003) Influence of β nucleation on the mechanical properties of isotactic polypropylene and rubber modified isotactic polypropylene. Polymer 43:3279–3293

    Article  Google Scholar 

  22. Bai HW, Wang Y, Song B, Li YL, Liu L (2008) Effect of nucleating agent on the brittle–ductile transition behavior of polypropylene/ethylene–octene copolymer blends. J Polym Sci Part B Polym Phys 46:577–588

    Article  CAS  Google Scholar 

  23. Bai HW, Wang Y, Song B, Han L (2008) Synergistic toughening effects of nucleating agent and ethylene–octene copolymer on polypropylene. J Appl Polym Sci 108:3270–3280

    Article  CAS  Google Scholar 

  24. Fanegas N, Gómez MA, Jiménez I, Marco C, Garcia-Martínez JM, Ellis G (2008) Optimizing the balance between impact strength and stiffness in polypropylene/elastomer blends by incorporation of a nucleating agent. Polym Eng Sci 48:80–87

    Article  CAS  Google Scholar 

  25. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158

    Article  CAS  Google Scholar 

  26. Henning S, Michler GH (2005) Micromechanical deformation mechanisms in polyolefins: influence of polymorphism and molecular weight. In: Michler GH, Baltá-Calleja FJ (eds) Mechanical properties of polymers based on nanostructure and morphology. Taylor & Francis, Boca Raton, pp 245–278

  27. Misra RDK, Hadal R, Duncan SJ (2004) Surface damage behavior during scratch deformation of mineral reinforced polymer composites. Acta Mater 52:4363–4376

    Article  CAS  Google Scholar 

  28. Misra RDK, Nathani H, Dasari A, Wanjale SD, Jog JP (2004) The determining role of clay particles on mechanically induced surface damage and associated stress whitening in polybutene–clay nanocomposites. Mater Sci Eng A 386:175–185

    Google Scholar 

  29. Speroni F, Castoldi E, Fabbri C, Casiraghi T (1989) Mechanisms of energy dissipation during impact in toughened polyamides: a SEM analysis. J Mater Sci 24:2165–2176

    Article  CAS  Google Scholar 

  30. Muratoğlu OK, Argon AS, Cohen RE, Weinberg M (1995) Microstructural processes of fracture of rubber-modified polyamides. Polymer 36:4771–4786

    Google Scholar 

  31. Tjong SC, Shen JS, Li RKY (1996) Morphological behaviour and instrumented dart impact properties of β-crystalline-phase polypropylene. Polymer 37:2309–2316

    Article  CAS  Google Scholar 

  32. Avella M, Dell’Erba R, Martuscelli E, Ragosta G (1993) Influence of molecular mass, thermal treatment and nucleating agent on structure and fracture toughness of isotactic polypropylene. Polymer 34:2951–2960

    Article  CAS  Google Scholar 

  33. Zhang PY, Liu XX, Li YQ (2006) Influence of β-nucleating agent on the mechanics and crystallization characteristics of polypropylene. Mater Sci Eng A 434:310–313

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thanks to National Natural Science and Technology Foundation (No. 50403019) and Sichuan Youthful Science and Technology Foundation (07ZQ026-003) (P.R. China) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, H., Wang, Y., Song, B. et al. Nucleating agent induced impact fracture behavior change in PP/POE blend. Polym. Bull. 62, 405–419 (2009). https://doi.org/10.1007/s00289-008-0019-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-008-0019-6

Keywords

Navigation