Skip to main content
Log in

pH Sensitive hydrogels based on acryl amides and their swelling and diffusion characteristics with drug delivery behavior

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

pH Sensitive poly(acryl amide-co-2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylamidoglycolic acid) hydrogels were synthesized by free-radical copolymerization. These hydrogels were prepared with different ratios of monomers and a crossliker. These hydrogels were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The diffusional exponent (n) values of synthesized hydrogels were found to be in the range between 0.49 and 0.59, indicating a quasi-Fickian diffusion mechanism with partly chain relaxation controlled diffusion. The hydrogels demonstrated a sharp change in its water absorbency and molecular weight between crosslinks of the network with a change in pH of the swelling media. 5-fluorouracil has been used as a model drug to study the drug release capability of these hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Peppas NA, Huang Y, Lugo MT, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9

    Article  CAS  Google Scholar 

  2. Savas H, Guven O (2001) Investigation of active substance release from poly (ethylene oxide) hydrogels. Int J Pharm 224:151–158

    Article  CAS  Google Scholar 

  3. Thomas JB, Creecy CM, McGinity JW, Peppas NA (2006) Synthesis and properties of lightly crosslinked poly (meth) acrylic acid microparticles prepared by free radical precipitation polymerization. Polym Bull 57:11

    Article  CAS  Google Scholar 

  4. Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49

    Article  CAS  Google Scholar 

  5. Hu Z, Lu X, Gao J (2001) Hydrogel Opals. Adv Mater 13:1708–1712

    CAS  Google Scholar 

  6. Zhang JT, Cheng SX, Huang SW, Zhuo RX (2003) Temperature-sensitive poly(N-isopropylacrylamide) hydrogels with macroporous structure and fast response rate. Macromol Rapid Commun 24:447

    Article  Google Scholar 

  7. Zhang JT, Huang SW, Gao FZ, Zhuo RX (2005) Novel temperature-sensitive, b-cyclodextrin-incorporated poly(N-isopropylacrylamide) hydrogels for slow release of drug. Colloid Polym Sci 283:461

    Article  CAS  Google Scholar 

  8. Vassilev K, Turmanova S (2008) Complexes of poly(2-N,N-dimethylaminoethyl) methacrylate with heavy metals I. Preparation and properties. Polym Bull 60:243

    Article  CAS  Google Scholar 

  9. Jabbari E, Nozari S (2000) Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. Eur Polym J 36:2685

    Article  CAS  Google Scholar 

  10. Kaetsu I, Uchida K, Sshindo H, Gomi S, Sutani K (1999) Intelligent type controlled release systems by radiation techniques. Radiat Phys Chem 55:193–201

    Article  CAS  Google Scholar 

  11. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Deliv Day 7:569

    CAS  Google Scholar 

  12. Ottenbrite RM, Kuus K, Kaplan AM (1983) Microencapsulation of mammalian cells in a biocompatible polyacrylate: a progress report. In: Chiellini E, Giusti P (eds) Polymers in medicine. Plenum, New York, p 3

  13. Lee JH, Oh JY, Kim DM (1999) MMA/MPEOMA copolymers as coating materials for improved blood compatibility: protein adsorption study. J Mater Sci Mater Med 10:629

    Article  CAS  Google Scholar 

  14. Han DK, Jeong SY, Lee YH, Min BG, Cho HI (1991) Negative cilia concept for thromboresistance: synergistic effect of PEO and sulfonate groups grafted onto polyurethanes. J Biomed Mater Res 25:561–575

    Article  CAS  Google Scholar 

  15. Lee SM, Ju SS, Chung HY, Ha CS, Cho WJ (2001) Syntheses and antitumor activities of polymers containing 2-acrylamido-2-methyl-1-propanesulfonic acid or 5-fluorouracil. Polym Bull 46:241–248

    Article  CAS  Google Scholar 

  16. Son YK, Kim JH, Jeon YS, Chung DJ (2007) Macromol Res 15:527

  17. Baba M, Schols D, Pauwels R, Nakashima H, De-Clercq EJ (1990) Sulfated polysaccharides as potent inhibitors of HIV-induced syncytium formation: a new strategy towards AIDS chemotherapy. Acquir Immunodefic Syndr 3:493

    CAS  Google Scholar 

  18. Byun H, Hong B, Nam SY, Jung SY, Rhim JW, Lee SB, Moon GY (2008) Swelling behavior and drug release of poly (vinyl alcohol) hydrogel cross-linked with poly (acrylic acid). Macromol Res 16:189

    CAS  Google Scholar 

  19. Lei J, Kim JH, Jeon YS (2008) Macromol Res 16:45

  20. Mbemba E, Chams V, Gluckman JC, Klatzmann D, Gattegno L (1992) Molecular interaction between HIV-1 major envelope glycoprotein and dextran sulfate. Biochim Biophys Acta 1138:62–67

    CAS  Google Scholar 

  21. Neyts J, Reymen D, Letourneur D, Jozefonvicz J, Schols D, Este J, Andrei G, McKenna P, Witvrouw M, Ikeda S, Clement J, De Clercq E (1995) Differential antiviral activity of derivatized dextrans. Biochem Pharmacol 50:743–751

    Article  CAS  Google Scholar 

  22. Rao PS, Sridhar S, Krishnaiah A, Wey MY (2007) Ind Eng Chem Res 45:2155–2163

    Google Scholar 

  23. Harogoppad SB, Aminabhavi TM (1991) Diffusion and sorption of organic liquids through polymer membranes. II. Neoprene, SBR, EPDM, NBR, and natural rubber versus n-alkanes. J Appl Polym Sci 42:2329–2336

    Article  CAS  Google Scholar 

  24. Garcia O, Trigo RM, Blanco MD, Teijon JM (1994) Influence of degree of crosslinking on 5-fluorouracil release from poly(2-hydroxyethyl methacrylate) hydrogels. Biomaterials 15:689

    Article  CAS  Google Scholar 

  25. Yoshida R, Okuyama Y, Sakai K, Okano T, Sakurai Y (1994) Sigmoidal swelling profiles for temperature-responsive poly(N-isopropylacrylamide-co-butyl methacrylate) hydrogels. J Membr Sci 89:267–277

    Article  CAS  Google Scholar 

  26. Khokhlov AR, Kramarenko E Yu (1994) Polyelectrolyte/Ionomer behavior in polymer gel collapse. Makromol Theory Simul 3:45

  27. Korsmeyer RW, Peppas NA (1983) Controlled release delivery systems. Marcel Dekker, New York

    Google Scholar 

  28. Lee WF, Shieh CH (1999) pH-thermoreversible hydrogels. II. Synthesis and swelling behaviors of N-isopropylacrylamide-co-acrylic acid-co-sodium acrylate hydrogels. J Appl Polym Sci 73:1955

    Article  CAS  Google Scholar 

  29. Tamura T, Kawabata N, Satoh M (2000) Swelling behavior of poly(α-hydroxy acrylic acid) gel in water/organic solvent mixtures. Polym Bull 44:209

    Article  CAS  Google Scholar 

  30. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  31. Mark JE, Erman B (1988) Rubberlike elasticity: a molecular primer. Wiley, New York

    Google Scholar 

  32. Xue W, Champ S, Huglin MB (2001) Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer 42:3665

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program funded by the Ministry of Science and Technology (MOST; M10300000369-06J0000-36910), the SRC/ERC program of MOST/KOSEF(grant # R11-2000-070-080020) and the Brain Korea 21 project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. S. V. Krishna Rao or Chang-Sik Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishna Rao, K.S.V., Ha, CS. pH Sensitive hydrogels based on acryl amides and their swelling and diffusion characteristics with drug delivery behavior. Polym. Bull. 62, 167–181 (2009). https://doi.org/10.1007/s00289-008-0011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-008-0011-1

Keywords

Navigation