Skip to main content
Log in

SIR dynamics in random networks with communities

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper investigates the effects of the community structure of a network on the spread of an epidemic. To this end, we first establish a susceptible–infected–recovered (SIR) model in a two-community network with an arbitrary joint degree distribution. The network is formulated as a probability generating function. We also obtain the sufficient conditions for disease outbreak and extinction, which involve the first-order and second-order moments of the degree distribution. As an example, we then study the effect of community structure on epidemic spread in a complex network with a Poisson joint degree distribution. The numerical solutions of the SIR model well agree with stochastic simulations based on the Monte Carlo method, confirming that the model is reliable and accurate. Finally, by strengthening the community structure in the simulation, i.e. fixing the total degree distribution and reducing the number ratio of the external edges, we can increase or decrease the final cumulative epidemic incidence depending on the transmissibility of the virus between humans and the community structure at that point. Why community structure can affect disease dynamics in a complicated way is also discussed. In any case, for large-scale epidemics, strengthening the community structure to reduce the size of disease is undoubtedly an effective way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ball F (1983) The threshold behavior of epidemic models. J Appl Probab 20(2):227–241

    Article  MathSciNet  Google Scholar 

  • Ball F, Neal P (2008) Network epidemic models with two levels of mixing. Math Biosci 212:69–87

    Article  MathSciNet  Google Scholar 

  • Ball F, Mollison D, Scalia-Tomba G (1997) Epidemics in populations with two levels of mixing. Ann Appl Probab 7:46–89

    Article  MathSciNet  Google Scholar 

  • Ball FG, Sirl DJ, Trapman P (2009) Threshold behaviour and final outcome of an epidemic on a random network with household structure. Adv Appl Probab 41:765–796

    Article  MathSciNet  Google Scholar 

  • Ball FG, Sirl DJ, Trapman P (2010) Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Math Biosci 224:53–73

    Article  MathSciNet  Google Scholar 

  • Ball F, Britton T, Sirl D (2013) A network with tunable clustering, degree correlation and degree distribution and an epidemic thereon. J Math Biol 66:979–1019

    Article  MathSciNet  Google Scholar 

  • Chris TB (2005) The spread of infectious diseases in spatially structured populations: an invasory pair approximation. Math Biosci 198:217–237

    Article  MathSciNet  Google Scholar 

  • Eames KTD (2008) Modelling disease spread through random and regular contacts in clustered populations. Theor Popul Biol 73:104–111

    Article  Google Scholar 

  • Gleeson JP (2009) Bond percolation on a class of clustered random networks. Phys Rev E 80:036107

    Article  Google Scholar 

  • Gleeson JP, Melnik S, Adam H (2010) How clustering affects the bond percolation threshold in complex networks. Phys Rev E 81:066114

    Article  MathSciNet  Google Scholar 

  • Gross T, DLima C, Blasius B (2006) Epidemic dynamics on an adaptive network. Phys Rev Lett 96(20):208701

    Article  Google Scholar 

  • House T, Keeling MJ (2010) Epidemic prediction and control in clustered populations. J Theor Biol 272(1):1–7

    Article  MathSciNet  Google Scholar 

  • House T, Keeling MJ (2011) Insights from unifying modern approximations to infections on networks. J R Soc Interface 8:67–73

    Article  Google Scholar 

  • Huang W, Li C (2007) Epidemic spreading in scale-free networks with community structure. J Stat Mech 1(1):01014

    Article  Google Scholar 

  • Jin EM, Girvan M, Newman MEJ (2001) Structure of growing social networks. Phys Rev E 64(2):322–333

    Google Scholar 

  • Kiss IZ, Miller JC, Simon PL (2017) Mathematics of epidemics on networks: from exact to approximate models. Springer, New York

    Book  Google Scholar 

  • Koch D, Illner R, Ma JL (2013) Edge removal in random contact networks and the basic reproduction number. J Math Biol 67:217–238

    Article  MathSciNet  Google Scholar 

  • Liu Z, Hu B (2005) Epidemic spreading in community networks. EPL 72(2):315–321

    Article  Google Scholar 

  • Liu JZ, Wu JS, Yang ZR (2004) The spread of infectious disease with household-structure on the complex networks. Physica A 141:273–280

    Article  Google Scholar 

  • Luo XF, Zhang X, Sun GQ, Jin Z (2014) Epidemical dynamics of SIS pair approximation models on regular and random networks. Physica A 410:144–153

    Article  MathSciNet  Google Scholar 

  • Ma J, Van DP, Willeboordse FH (2013) Effective degree household network disease model. J Math Biol 66:75–94

    Article  MathSciNet  Google Scholar 

  • Miller J (2009a) Percolation and epidemics in random clustered networks. Phys Rev E 80:020901R

    Article  MathSciNet  Google Scholar 

  • Miller J (2009b) Spread of infectious disease through clustered populations. J R Soc Interface 6:1121–1134

    Article  Google Scholar 

  • Miller JC (2011) A note on a paper by Erik Volz: SIR dynamics in random networks. J Math Biol 62:349–358

    Article  MathSciNet  Google Scholar 

  • Miller JC, Volz EM (2013) Incorporating disease and population structure into models of SIR disease in contact networks. PLoS One 8:1–14

    Google Scholar 

  • Molloy M, Reed R (1995) A critical point for random graphs with a given degree sequence. Random Struct Algorithms 6(2–3):161–180

    Article  MathSciNet  Google Scholar 

  • Neal P (2007) Coupling of two SIR epidemic models with variable susceptibility and infectivity. J Appl Probab 44:41–57

    Article  MathSciNet  Google Scholar 

  • Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E 66:016128

    Article  MathSciNet  Google Scholar 

  • Newman MEJ (2003a) Mixing patterns in networks. Phys Rev E 67(2):241–251

    Article  MathSciNet  Google Scholar 

  • Newman MEJ (2003b) Properties of highly clustered networks. Phys Rev E 68:026121

    Article  Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community struture in networks. Phys Rev E 69(2):026113

    Article  Google Scholar 

  • Orman K, Labatut V, Cherifi H (2013) An empirical study of the relation between community structure and transitivity. Complex Netw SCI 424:99–110

    Google Scholar 

  • Peng XL, Small M, Xu XJ, Fu X (2013) Temporal prediction of epidemic patterns in community networks. New J Phys 15(11):17161–17175

    Article  Google Scholar 

  • Rowthorn RE, Laxminarayan R, Gilligan CA (2009) Optimal control of epidemics in metapopulations. J R Soc Interface 6:1135–1144

    Article  Google Scholar 

  • Salathé M, Jones JH (2010) Dynamics and control of diseases in networks with community structure. PLOS Comput Biol 6(4):e1000736

    Article  MathSciNet  Google Scholar 

  • Sun HJ, Gao ZY (2007) Dynamical behaviors of epidemics on scale-free networks with community structure. Physica A 381:491–496

    Article  Google Scholar 

  • Traud A, Kelsic E, Mucha P, Porter M (2009) Community structure in online collegiate social networks. APS March Meet 53(3):526–543

    MathSciNet  Google Scholar 

  • Tunc I, Shaw LB (2014) Effects of community structure on epidemic spread in an adaptive network. Phys Rev E 90(2):022801

    Article  Google Scholar 

  • Volz E (2008) SIR dynamics in random networks with heterogeneous connectivity. J Math Biol 56:293–310

    Article  MathSciNet  Google Scholar 

  • Wang B, Cao L, Suzuki H, Aihara K (2010) Epidemic spread in adaptive networks with multitype agents. J Phys A Math Theor 44:035101

    Article  MathSciNet  Google Scholar 

  • Wang B, Cao L, Suzuki H, Aihara K (2012) Impacts of clustering on interacting epidemic. J Theor Biol 304:121–130

    Article  MathSciNet  Google Scholar 

  • Wu XY, Liu ZH (2008) How community structure influences epidemic spread in social networks. Physica A 387:623–630

    Article  Google Scholar 

  • Yan G, Fu ZQ, Ren J, Wang WX (2007) Collective synchronization induced by epidemic dynamics on complex networks with communities. Phys Rev E 75(1 Pt 2):112–118

    Google Scholar 

  • Zachary W (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33(4):452–473

    Article  Google Scholar 

  • Zhou J, Liu ZH (2009) Epidemic spreading in communities with mobile agents. Physica A 388:1228–1236

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundations of China under Grant (Nos. 11571210, 11331009, 11501339, 11101251, 11001157, 11471197, 11701348) and the Youth Science Foundation of Shanxi Province (No. 2010021001-1).The authors wish to thank the anonymous referees for their helpful feedback and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxian Li.

Appendices

Appendix A: the dynamics of SIR epidemic model in a network with two communities

In this section, we develop an SIR-epidemic model involving the variables \(\theta _{mn}\), \(p^{I_m}_{S_n}\) and \(p^{S_m}_{S_n}\), \(m,n=1,2\). The method used is similar to that (Volz 2008).

Firstly, we introduce the dynamics of \(\theta _{mn}\), \(m,n=1,2.\) Consider a susceptible node ego in community l at time t with a joint degree (kj), there are a set of k internal arcs \((\text{ ego }^l,\text{ alter }^{in}_{1})\), \((\text{ ego }^l,\text{ alter }^{in}_{2})\), \(\cdots \), \((\text{ ego }^l, \text{ alter }^{in}_{k})\) and a set of j external arcs \((\text{ ego }^l,\text{ alter }^{out}_{1})\), \((\text{ ego }^l,\text{ alter }^{out}_{2})\), \(\cdots \), \((\text{ ego }^l,\text{ alter }^{out}_{j})\) corresponding to the ego. We assume that for each arc \((\text{ ego }^l,\text{ alter }^{in}_{m})\) for \(m=1,2,\cdots , k\) and \((\text{ ego }^l,\text{ alter }^{out}_{n})\) for \(n=1,2,\cdots , j\), there will be uniform probabilities \(p^{I_l}_{S_l}=M^{I_l}_{S_l}/M^{in}_{S_l}\) and \(p^{I_n}_{S_l}=M^{I_n}_{S_l}/M^{out}_{S_l}\) for \(n\ne l\) that \(alter^{in}_{m}\) and \(alter^{out}_{n}\) are infectious, respectively. In a time dt, an expected number \(\gamma (k p^{I_l}_{S_l}+j p^{I_n}_{S_l})dt\) for \(n\ne l\) of these will be such that the infectious alter transmits to ego. Consequently, the hazard for ego becoming infected at time t is

$$\begin{aligned} \lambda ^l_{(k,j)}(t)=\gamma (k p^{I_l}_{S_l}+j p^{I_n}_{S_l}), \ \ \ \ \ l,n=1,2,\ \ \ n\ne l \end{aligned}$$
(42)

Now let \(u^l_{(k,j)}(t)\) represent the fraction of nodes with joint degree (kj) in community l which remain susceptible at time t. Using Eq. (42), we have

$$\begin{aligned} u^l_{(k,j)}(t)= & {} \exp \left( {-\int _0^t\lambda _{(k,j)}(\tau )d\tau }\right) =\exp (-\int _0^t\gamma \left( k p^{I_l}_{S_l}+j p^{I_n}_{S_l}\right) d\tau )\nonumber \\= & {} \exp \left( -\int _0^t\gamma p^{I_l}_{S_l}d\tau \right) ^k \cdot \exp \left( -\int _0^t\gamma p^{I_n}_{S_l}d\tau \right) ^j,\ \ \ \ \ l,n=1,2,\ n\ne l\nonumber \\ \end{aligned}$$
(43)

Subsequently, let

$$\begin{aligned} \theta _{ln}=\exp \left( {-\int _0^t\gamma p^{I_n}_{S_l}d\tau }\right) , l,n=1,2. \end{aligned}$$
(44)

Then

$$\begin{aligned} u^l_{(k,j)}(t)=(\theta _{ll})^k\cdot (\theta _{ln})^j,\ \ \ \ n\ne l \end{aligned}$$

Thus, the fraction of nodes which remain susceptible at time t in community l for \(l=1, 2\) are

$$\begin{aligned} \left\{ \begin{array}{ll} s_1=\sum \limits _{k,j}P_1(k,j)\theta _{11}^k\theta _{12}^j=\frac{N}{N_1}G(\theta _{11}, \theta _{12}, 0, 0), \ \ \ \ \, \ &{}\ \ \\ s_2=\sum \limits _{k,j}P_2(k,j)\theta _{22}^k\theta _{21}^j=\frac{N}{N_2}G(0, 0, \theta _{22}, \theta _{21}), \ \ \ \ \, \ &{} \ \ \end{array}\right. \end{aligned}$$
(45)

respectively and the fraction of nodes which remain susceptible in the whole network at time t is

$$\begin{aligned} s=\sum \limits _{l,n=1}^2\sum \limits _{n\ne l}\sum \limits _{k,j}\frac{N_l}{N}P_l(k,j)\theta _{ll}^k\theta _{ln}^j=G(\theta _{11},\theta _{12},\theta _{22},\theta _{21}). \end{aligned}$$

Similarly, for \(l,n=1,2\) and \(n\ne l\), we have

$$\begin{aligned} A^{in}_{S_l}= & {} N_l\sum \limits _{k,j}kP_l{(k,j)\theta _{ll}^k\theta _{ln}^j}=NG_l{(\theta _{ll},\theta _{ln})}\theta _{ll},\nonumber \\ A^{out}_{S_l}= & {} N_l\sum \limits _{k,j}jP_l{(k,j)\theta _{ll}^k\theta _{ln}^j}=NG^l{(\theta _{ll},\theta _{ln})}\theta _{ln}. \end{aligned}$$
(46)

In terms of \(A^{in}_l=NG_l{(1,1)}\) and Eq. (46), we have

$$\begin{aligned} M^{in}_{S_l}=\frac{G_l{(\theta _{ll},\theta _{ln})}\theta _{ll}}{G_l{(1,1)}},\ \ \ M^{out}_{S_l}=\frac{G^l{(\theta _{ll},\theta _{ln})}\theta _{ln}}{G^l{(1,1)}} \end{aligned}$$
(47)

According to Eq. (44), the dynamics of \(\theta _{ln}\), \(l, n=1, 2\) is

$$\begin{aligned} \dot{\theta }_{ln}=-\gamma \theta _{ln}p^{I_n}_{S_l}, \ \ \ \ \ l,n=1,2, \end{aligned}$$
(48)

which depends on the variable \(p^{I_n}_{S_l}\). To close the above system, we have to calculate the dynamics of \(p^{I_n}_{S_l}\).

Second, we introduce the dynamics of \(p^{I_n}_{S_l}\) for \(l,n=1,2\). The definition of \(p^{I_n}_{S_l}\) is

$$\begin{aligned} p^{I_n}_{S_l}=\left\{ \begin{array}{ll} \frac{M^{I_l}_{S_l}}{M^{in}_{S_l}},&{}\ \ n=l\\ \frac{M^{I_n}_{S_l}}{M^{out}_{S_l}},&{} \ \ n\ne l\end{array}\right. . \end{aligned}$$
(49)

Hence,

(50)

From Eq. (47), we easily get

$$\begin{aligned} \dot{ M^{in}_{S_l}}=\frac{G_{ll}{(\theta _{ll},\theta _{ln})}\dot{\theta }_{ll}\theta _{ll}+G_l^l{(\theta _{ll},\theta _{ln})} \dot{\theta }_{ln}\theta _{ll}+G_l(\theta _{ll},\theta _{ln})\dot{\theta }_{ll}}{G_l{(1,1)}} \end{aligned}$$
(51)

and

$$\begin{aligned} \dot{ M^{out}_{S_l}}=\frac{G_l^l{(\theta _{ll},\theta _{ln})}\dot{\theta }_{ll}\theta _{ln}+G^{ll}{(\theta _{ll},\theta _{ln})} \dot{\theta }_{ln}\theta _{ln}+G^l(\theta _{ll},\theta _{ln})\dot{\theta }_{ln}}{G^l{(1,1)}} \end{aligned}$$
(52)

where \(l,n=1,2\) and \(n\ne l\).

The dynamics of \(M^{I_n}_{S_l}\) for l, \(n=1,2\) depends on the state of excessive neighbors (not counting the alter \(I_n\) in the chosen arc \((S_l, I_n)\)) of the ego node \(S_l\) for an random chosen arc \((S_l, I_n)\) in \(A^{I_n}_{S_l}\) for l, \(n=1,2\). The following notations in Table 2 are needed to clarify subsequent calculations.

Table 2 Symbols

The PGF for the excessive degree distribution of the ego node \(S_l\) in the selected arc \((S_l, I_n)\) are

$$\begin{aligned}&g_{S_1I_1}{(X_{S_1},X_{I_1},X_{R_1},X_{S_2},X_{I_2},X_{R_2})}\nonumber \\&\quad =\frac{G_1{((p^{S_1}_{S_1}X_{S_1}+p^{I_1}_{S_1}X_{I_1}+p^{R_1}_{S_1}X_{R_1})\theta _{11},(p^{S_2}_{S_1}X_{S_2}+p^{I_2}_{S_1}X_{I_2}+p^{R_2}_{S_1}X_{R_2})\theta _{12})}}{G_1{(\theta _{11},\theta _{12})}},\nonumber \\ \end{aligned}$$
(53)
$$\begin{aligned}&g_{S_1I_2}{(X_{S_1},X_{I_1},X_{R_1},X_{S_2},X_{I_2},X_{R_2})}\nonumber \\&\quad =\frac{G^1{((p^{S_1}_{S_1}X_{S_1}+p^{I_1}_{S_1}X_{I_1}+p^{R_1}_{S_1}X_{R_1})\theta _{11},(p^{S_2}_{S_1}X_{S_2}+p^{I_2}_{S_1}X_{I_2}+p^{R_2}_{S_1}X_{R_2})\theta _{12})}}{G^1{(\theta _{11},\theta _{12})}},\nonumber \\ \end{aligned}$$
(54)
$$\begin{aligned}&g_{S_2I_1}{(X_{S_1},X_{I_1},X_{R_1},X_{S_2},X_{I_2},X_{R_2})}\nonumber \\&\quad =\frac{G^2{((p^{S_2}_{S_2}X_{S_2}+p^{I_2}_{S_2}X_{I_2}+p^{R_2}_{S_2}X_{R_2})\theta _{22},(p^{S_1}_{S_2}X_{S_1}+p^{I_1}_{S_2}X_{I_1}+p^{R_1}_{S_2}X_{R_1})\theta _{21})}}{G^2{(\theta _{22},\theta _{21})}},\nonumber \\ \end{aligned}$$
(55)
$$\begin{aligned}&g_{S_2I_2}{(X_{S_1},X_{I_1},X_{R_1},X_{S_2},X_{I_2},X_{R_2})}\nonumber \\&\quad =\frac{G_2{((p^{S_2}_{S_2}X_{S_2}+p^{I_2}_{S_2}X_{I_2}+p^{R_2}_{S_2}X_{R_2})\theta _{22},(p^{S_1}_{S_2}X_{S_1}+p^{I_1}_{S_2}X_{I_1}+p^{R_1}_{S_2}X_{R_1})\theta _{21})}}{G_2{(\theta _{22},\theta _{21})}}.\nonumber \\ \end{aligned}$$
(56)

The derivation of the Eq. (53) is presented in the “Appendix B” as an example.

Because arcs are distributed polynomially to nodes in sets S, I, R, we have \(g_{S_1I_1}{(X_{S_1},X_{I_1},X_{R_1},X_{S_2},X_{I_2},X_{R_2})}=g_{S_1S_1}{(X_{S_1},X_{I_1},X_{R_1},X_{S_2},X_{I_2},X_{R_2})}\), which is easy to verify by repeating the calculation in Eq. (53).

By Eqs. (53) and (54), we have

$$\begin{aligned} \delta _{S_lI_l}(S_l)= & {} \frac{\partial g_{S_lI_l}(X_{S_l},X_{I_l},X_{R_l},X_{S_n},X_{I_n},X_{R_n})}{\partial X_{S_l}}|_{X_{S_l}=X_{I_l}=X_{R_l}=X_{S_n}=X_{I_n}=X_{R_n}=1} \nonumber \\= & {} \frac{G_{ll}(\theta _{ll},\theta _{ln})p^{S_l}_{S_l}\theta _{ll}}{G_l(\theta _{ll},\theta _{ln})},\nonumber \\ \delta _{S_lI_l}(I_l)= & {} \frac{\partial g_{S_lI_l}(X_{S_l},X_{I_l},X_{R_l},X_{S_n},X_{I_n},X_{R_n})}{\partial X_{I_l}}|_{X_{S_l}=X_{I_l}=X_{R_l}=X_{S_n}=X_{I_n}=X_{R_n}=1} \nonumber \\= & {} \frac{G_{ll}(\theta _{ll},\theta _{ln})p^{I_l}_{S_l}\theta _{ll}}{G_l(\theta _{ll},\theta _{ln})},\nonumber \\ \delta _{S_lI_n}(I_l)= & {} \frac{\partial g_{S_lI_n}(X_{S_l},X_{I_l},X_{R_l},X_{S_n},X_{I_n},X_{R_n})}{\partial X_{I_l}} |_{X_{S_l}=X_{I_l}=X_{R_l}=X_{S_n}=X_{I_n}=X_{R_n}=1} \nonumber \\= & {} \frac{G_l^l(\theta _{ll},\theta _{ln})p^{I_l}_{S_l}\theta _{ll}}{G^l(\theta _{ll},\theta _{ln})},\nonumber \\ \delta _{S_lI_n}(S_l)= & {} \frac{ \partial g_{S_lI_n}(X_{S_l},X_{I_l},X_{R_l},X_{S_n},X_{I_n},X_{R_n})}{\partial X_{S_l}}|_{X_{S_l}=X_{I_l}=X_{R_l}=X_{S_n}=X_{I_n}=X_{R_n}=1} \nonumber \\= & {} \frac{G_l^l(\theta _{ll},\theta _{ln})p^{S_l}_{S_l}\theta _{ll}}{G^l(\theta _{ll},\theta _{ln})}. \end{aligned}$$
(57)

We next obtain the dynamics of \(M_{S_l}^{I_l}\). Volz (2008) introduces the approach to model SIR dynamics on networks. Here, we briefly present this approach.

There are three reasons for the reduction of the fraction of arcs between \(S_l\) and \(I_l\). One reason is the newly infectious nodes in community l. In a time infinitesimal dt, the fraction of newly infectious nodes is \(-\dot{s}_l\). According to Eq. (45), we can obtain

$$\begin{aligned} \dot{s}_l=\frac{N}{N_l}G_l(\theta _{ll},\theta _{ln})\dot{\theta }_{ll}+\frac{N}{N_l}G^l(\theta _{ll},\theta _{ln})\dot{\theta }_{ln}, \end{aligned}$$
(58)

in which \(-\frac{N}{N_l}G_l(\theta _{ll},\theta _{ln})\dot{\theta }_{ll}\) describes a fraction nodes infected by infectious alters in community l and \(-\frac{N}{N_l}G^l(\theta _{ll},\theta _{ln})\dot{\theta }_{ln}\) describes a fraction nodes infected by infectious alters in community n for \(l\ne n\). Therefore, \(M^{I_l}_{S_l}\) decreases at rate

$$\begin{aligned}&-\frac{N}{N_l}G_l(\theta _{ll},\theta _{ln})\dot{\theta }_{ll}\frac{\delta _{S_lI_l}(I_l)}{\frac{N}{N_l}G_l{(1,1)}} -\frac{N}{N_l}G^l(\theta _{ll},\theta _{ln})\dot{\theta }_{ln}\frac{\delta _{S_lI_n}(I_l)}{\frac{N}{N_l}G_l{(1,1)}}\nonumber \\&\quad =-\frac{G_l(\theta _{ll},\theta _{ln})}{G_l{(1,1)}}\delta _{S_lI_l}(I_l)\dot{\theta }_{ll} -\frac{G^l(\theta _{ll},\theta _{ln})}{G_l{(1,1)}}\delta _{S_lI_n}(I_l)\dot{\theta }_{ln}. \end{aligned}$$
(59)

Because \(\delta _{S_lI_l}(I_l)\) does not count the arc along which a node was infected, another reason is the transmission from the infectious alter to the susceptible ego in this arc, which results in a reduction at a rate

$$\begin{aligned} \gamma {M^{I_l}_{S_l}}. \end{aligned}$$

The third reason is the recovery of the infectious alter in the arcs, which brings about a reduction at a rate

$$\begin{aligned} \mu I_l\frac{M^{I_l}_{S_l}}{I_l}=\mu M^{I_l}_{S_l}. \end{aligned}$$

On the other hand, the increase of \(M^{I_l}_{S_l}\) is only due to the infection of the fraction of the susceptible egos which have excessive susceptible neighbors. So \({M^{I_l}_{S_l}}\) increases at the rate

$$\begin{aligned}&-\frac{N}{N_l}G_l(\theta _{ll},\theta _{ln})\dot{\theta }_{ll}\frac{\delta _{S_lI_l}(S_l)}{\frac{N}{N_l}G_l{(1,1)}} -\frac{N}{N_l}G^l(\theta _{ll},\theta _{ln})\dot{\theta }_{ln}\frac{\delta _{S_lI_n}(S_l)}{\frac{N}{N_l}G_l{(1,1)}}\nonumber \\&\quad =-\frac{G_l(\theta _{ll},\theta _{ln})}{G_l{(1,1)}}\delta _{S_lI_l}(S_l)\dot{\theta }_{ll} -\frac{G^l(\theta _{ll},\theta _{ln})}{G_l{(1,1)}}\delta _{S_lI_n}(S_l)\dot{\theta }_{ln}. \end{aligned}$$
(60)

From Eqs. (48), (59)–(60), we have

$$\begin{aligned} \dot{M}^{I_l}_{S_l}= & {} -(\gamma +\mu ) M^{I_l}_{S_l}-\frac{G_l(\theta _{ll},\theta _{ln})}{G_l{(1,1)}}(\delta _{S_lI_l}(S_l)-\delta _{S_lI_l}(I_l))\dot{\theta }_{ll}\nonumber \\&-\frac{G^l(\theta _{ll},\theta _{ln})}{G_l{(1,1)}}(\delta _{S_lI_n}(S_l)-\delta _{S_lI_n}(I_l))\dot{\theta }_{ln}\nonumber \\= & {} \gamma \frac{(p^{S_l}_{S_l}-p^{I_l}_{S_l})\theta _{ll}}{G_l{(1,1)}} (G_{ll}(\theta _{ll},\theta _{ln}) \theta _{ll}p^{I_l}_{S_l}\nonumber \\&+G_l^l(\theta _{ll},\theta _{ln})\theta _{ln}p^{I_n}_{S_l})-(\gamma +\mu ) M^{I_l}_{S_l}. \end{aligned}$$
(61)

Now applying Eqs. (47), (48), (51) and (61) to Eq. (50), we obtain the dynamics of \( p^{I_l}_{S_l}\), i.e.

$$\begin{aligned} \frac{dp^{I_l}_{S_l}}{dt}= & {} \frac{\gamma \theta _{ll}p^{I_l}_{S_l}p^{S_l}_{S_l}G_{ll}{(\theta _{ll},\theta _{ln})}}{G_l{(\theta _{ll},\theta _{ln})}} +\frac{\gamma \theta _{ln}p^{I_n}_{S_l}p^{S_l}_{S_l}G_l^l{(\theta _{ll},\theta _{ln})}}{G_l{(\theta _{ll},\theta _{ln})}} -(\gamma +\mu )p^{I_l}_{S_l}+\gamma ({p}^{I_l}_{S_l})^2\nonumber \\= & {} \frac{\gamma \theta _{ll}p^{I_l}_{S_l}p^{S_l}_{S_l}G_{ll}{(\theta _{ll},\theta _{ln})}}{G_l{(\theta _{ll},\theta _{ln})}} +\frac{\gamma \theta _{ln}p^{I_n}_{S_l}p^{S_l}_{S_l}G_l^l{(\theta _{ll},\theta _{ln})}}{G_l{(\theta _{ll},\theta _{ln})}}-\gamma p^{I_l}_{S_l}(1-p^{I_l}_{S_l})-\mu p^{I_l}_{S_l}.\nonumber \\ \end{aligned}$$
(62)

Similarly, we can obtain the dynamics of \(p^{I_n}_{S_l}\), \(p^{S_l}_{S_l}\) and \(p^{S_n}_{S_l}\) for \(l\ne n\) and \(l, n=1, 2\).

Appendix B: the PGF for the excessive degree distribution of the ego node in an arc

We give PGF for the excessive degree distribution of the ego node \(S_l\) in an arc \((S_l, I_n)\), which is a conditional PGF involving the state of the ego node.

Table 3 Random variables

For an arbitrary chosen arc \(\xi \), define some random variables. Easy to find, we list them in Table 3. Let A, B and C represent the state of a node and they may be S, I or R. Let \(P(i_1, j_1, l_1, i_2, j_2, l_2\mid \xi )\) be the conditional probability that \(\xi _{S_1}=i_1\), \(\xi _{I_1}=j_1\), \(\xi _{R_1}=l_1\), \(\xi _{S_2}=i_2\), \(\xi _{I_2}=j_2\) and \(\xi _{R_2}=l_2\) for an arbitrary chosen arc \(\xi \). The amount of excessive neighbors in state S, I and R and in community l, \(l=1,2\), of ego node in state A and in the chosen arc are distributed polynomially with probability \(p^{I_l}_{A}\), \(p^{S_l}_{A}\) and \(p^{R_l}_{A}=1-p^{I_l}_{A}-p^{S_l}_{A}\), \(l=1,2\), respectively.

The PGF for the excessive degree distribution of the ego node \(S_1\) in the chosen arc \((S_1, I_1)\), is

$$\begin{aligned}&g_{S_1I_1}{(X_{S_1},X_{I_1},X_{R_1},X_{S_2},X_{I_2},X_{R_2})}\nonumber \\&\quad =\sum \limits _{i_1+m_1\le {k}}\sum \limits _{i_2+m_2\le {j}}P(i_1,m_1-1,l_1,i_2,m_2,l_2|S_1I_1)\nonumber \\&\qquad X_{S_1}^{i_1}X_{I_1}^{m_1-1}X_{R_1}^{l_1}X_{S_2}^{i_2}X_{I_2}^{m_2}X_{R_2}^{l_2}. \end{aligned}$$
(63)

From the definition of the conditional probability, we have

$$\begin{aligned} P(i_1,m_1-1,l_1,i_2,m_2,l_2|S_1I_1)= & {} \frac{P(i_1, m_1-1, l_1, i_2, m_2, l_2,S_1I_1)}{P(S_1I_1)}. \end{aligned}$$
(64)

Grounded on total probability formula, we have

$$\begin{aligned} P(i_1, m_1-1, l_1, i_2, m_2, l_2,S_1I_1)=\sum \limits _{k,j}P_1\cdot P_2\cdot P_3\cdot P_4\cdot P_5 \end{aligned}$$
(65)

and

$$\begin{aligned} P(S_1I_1)=\sum \limits _{k,j} P_2\cdot P_3\cdot P_4\cdot P_5, \end{aligned}$$
(66)

where

$$\begin{aligned} P_1= & {} P(i_1, m_1-1, l_1, i_2, m_2, l_2|\vartheta _2=I_1,\vartheta _1=S,d=(k,j),\eta =1)\nonumber \\ P_2= & {} P(\vartheta _2=I_1|\vartheta _1=S,d=(k,j),\eta =1)=p_{S_1}^{I_1},\nonumber \\ P_3= & {} P(\vartheta _1=S|d=(k,j),\eta =1)=\theta ^k_{11}\theta ^j_{12},\nonumber \\ P_4= & {} P(d=(k,j)|\eta =1)=\frac{N_1kP_1(k,j)}{N_1\frac{N}{N_1}(G_1+G^1)}, \nonumber \\ P_5= & {} P(\eta =1)=\frac{G_1+G^1}{\sum \nolimits ^2_{l=1}{(G_l+G^l)}}. \end{aligned}$$
(67)

Since the amount of excessive neighbors of ego node in state S and in the chosen arc \((S_1,I_1)\) are distributed polynomially with probability \(p_{S_1}^{S_l}\), \(p_{S_1}^{I_l}\), \(p^{R_l}_{S_1}=1-p^{S_l}_{S_1}-p_{S_1}^{I_l}\), \(l=1,2\), respectively, we have

$$\begin{aligned} P_1= & {} P(i_1, m_1-1, l_1, i_2, m_2, l_2|\vartheta _2=I_1,\vartheta _1=S,d=(k,j),\eta =1)\nonumber \\= & {} \frac{(k-1)!j!{(p_{S_1}^{S_1})}^{i_1}{(p_{S_1}^{I_1})}^{m_1-1}{(p_{S_1}^{R_1})}^{k-i_1-m_1}{(p_{S_1}^{S_2})}^{i_2}{(p_{S_1}^{I_2})}^{m_2} {(p_{S_1}^{R_2})}^{j-i_2-m_2}}{i_1!(m_1-1)!(k-i_1-m_1)!i_2!m_2!(j-i_2-m_2)!}.\nonumber \\ \end{aligned}$$
(68)

From Eqs. (63), (64), (65), (66) and (67), we have

$$\begin{aligned}&g_{S_1I_1}{(X_{S_1},X_{I_1},X_{R_1},X_{S_2},X_{I_2},X_{R_2})}\nonumber \\&\quad =\sum \limits _{i_1+m_1\le {k}}\sum \limits _{i_2+m_2\le {j}}\frac{\sum \nolimits _{k,j}P_1\cdot P_2\cdot P_3\cdot P_4\cdot P_5}{\sum \nolimits _{k,j} P_2\cdot P_3\cdot P_4\cdot P_5}X_{S_1}^{i_1}X_{I_1}^{m_1-1}X_{R_1}^{l_1}X_{S_2}^{i_2}X_{I_2}^{m_2}X_{R_2}^{l_2} \nonumber \\&\quad =\frac{\sum \nolimits _{k,j}\sum \nolimits _{i_1+m_1\le {k}}\sum \nolimits _{i_2+m_2\le {j}}P_1\cdot \theta ^k_{11}\theta ^j_{12}{kP_1(k,j)} p_{S_1}^{I_1}X_{S_1}^{i_1}X_{I_1}^{m_1-1}X_{R_1}^{l_1}X_{S_2}^{i_2}X_{I_2}^{m_2}X_{R_2}^{l_2}}{\sum \nolimits _{k,j} \theta ^k_{11}\theta ^j_{12} p_{S_1}^{I_1}\cdot {kP_1(k,j)}} \nonumber \\&\quad =\frac{\sum \nolimits _{k,j}\theta ^k_{11}\theta ^j_{12}{P_1(k,j)}\sum \nolimits _{i_1+m_1\le {k}}\sum \nolimits _{i_2+m_2\le {j}}kp_{S_1}^{I_1}P_1\cdot X_{S_1}^{i_1}X_{I_1}^{m_1-1}X_{R_1}^{l_1}X_{S_2}^{i_2}X_{I_2}^{m_2}X_{R_2}^{l_2} }{\sum \nolimits _{k,j} \theta ^k_{11}\theta ^j_{12}\cdot {kp_{S_1}^{I_1}P_1(k,j)}}.\nonumber \\ \end{aligned}$$
(69)

Furthermore, Eq. (68) leads to

$$\begin{aligned} \sum \limits _{i_1+m_1\le {k}}\sum \limits _{i_2+m_2\le {j}}kp_{S_1}^{I_1}P_1\cdot X_{S_1}^{i_1}X_{I_1}^{m_1-1}X_{R_1}^{l_1}X_{S_2}^{i_2}X_{I_2}^{m_2}X_{R_2}^{l_2}=\varDelta _1\cdot \varDelta _2,\end{aligned}$$
(70)

where

$$\begin{aligned} \varDelta _1= & {} \sum \limits _{i_1+m_1\le k}\frac{k!p_{S_1}^{I_1}{(p_{S_1}^{S_1}X_{S_1})}^{i_1}{(p_{S_1}^{I_1}X_{I_1})}^{m_1-1}{(p_{S_1}^{R_1}X_{R_1})}^{k-i_1-m_1} }{i_1!(m_1-1)!(k-i_1-m_1)!}\nonumber \\= & {} \frac{d{(p^{S_1}_{S_1}X_{S_1}+p^{I_1}_{S_1}X_{I_1}+p^{R_1}_{S_1}X_{R_1})^k}}{dX_{I_1}} \end{aligned}$$
(71)

and

$$\begin{aligned} \varDelta _2= & {} \sum \limits _{i_2+m_2\le j}\frac{j!{(p_{S_1}^{S_2}X_{S_2})}^{i_2}{(p_{S_1}^{I_2}X_{I_2})}^{m_2} {(p_{S_1}^{R_2}X_{R_2})}^{j-i_2-m_2}}{i_2!m_2!(j-i_2-m_2)!}\nonumber \\= & {} (p^{S_2}_{S_1}X_{S_2}+p^{I_2}_{S_1}X_{I_2}+p^{R_2}_{S_1}X_{R_2})^j \end{aligned}$$
(72)

Thus, from Eqs. (70), (71) and (72), we have

$$\begin{aligned}&\sum \limits _{k,j}\theta ^k_{11}\theta ^j_{12}{P_1(k,j)}\varDelta _1\varDelta _2 \nonumber \\&\quad =\sum \limits _{k,j}\theta ^k_{11}\theta ^j_{12}{P_1(k,j)}\frac{d{(p^{S_1}_{S_1}X_{S_1}+p^{I_1}_{S_1}X_{I_1}+p^{R_1}_{S_1}X_{R_1})^k}}{dX_{I_1}} \nonumber \\&\qquad (p^{S_2}_{S_1}X_{S_2}+p^{I_2}_{S_1}X_{I_2}+p^{R_2}_{S_1}X_{R_2})^j\nonumber \\&\quad =\frac{N}{N_1}G_1{(\alpha \theta _{11},\beta \theta _{12})}p^{I_1}_{S_1}\theta _{11}, \end{aligned}$$
(73)

where \(\alpha =p^{S_1}_{S_1}X_{S_1}+p^{I_1}_{S_1}X_{I_1}+p^{R_1}_{S_1}X_{R_1}\) and \(\beta =p^{S_2}_{S_1}X_{S_2}+p^{I_2}_{S_1}X_{I_2}+p^{R_2}_{S_1}X_{R_2}\). As in the above analysis, we have

$$\begin{aligned} \sum \limits _{k,j} \theta ^k_{11}\theta ^j_{12}p_{S_1}^{I_1}\cdot {kP_1(k,j)} =\frac{N}{N_1}{G_1{(\theta _{11},\theta _{12})p_{S_1}^{I_1}\theta _{11}}}. \end{aligned}$$
(74)

From Eqs. (69), (73) and (74), we have

$$\begin{aligned}&g_{S_1I_1}{(X_{S_1},X_{I_1},X_{R_1},X_{S_2},X_{I_2},X_{R_2})}=\frac{\sum \nolimits _{k,j}\theta ^k_{11}\theta ^j_{12}{P_1(k,j)}\varDelta _1\varDelta _2 }{\sum \nolimits _{k,j} \theta ^k_{11}\theta ^j_{12}p_{S_1}^{I_1}\cdot {kP_1(k,j)}}\nonumber \\&\quad =\frac{G_1{((p^{S_1}_{S_1}X_{S_1}+p^{I_1}_{S_1}X_{I_1}+p^{R_1}_{S_1}X_{R_1})\theta _{11},(p^{S_2}_{S_1}X_{S_2}+p^{I_2}_{S_1}X_{I_2}+p^{R_2}_{S_1}X_{R_2})\theta _{12})}}{G_1{(\theta _{11},\theta _{12})}}.\nonumber \\ \end{aligned}$$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, J. & Jin, Z. SIR dynamics in random networks with communities. J. Math. Biol. 77, 1117–1151 (2018). https://doi.org/10.1007/s00285-018-1247-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1247-5

Keywords

Mathematics Subject Classification

Navigation