Skip to main content
Log in

Resistance to antibiotics: limit theorems for a stochastic SIS model structured by level of resistance

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The rise of bacterial resistance to antibiotics is a major Public Health concern. It is the result of two interacting processes: the selection of resistant bacterial strains under exposure to antibiotics and the dissemination of bacterial strains throughout the population by contact between colonized and uncolonized individuals. To investigate the resulting time evolution of bacterial resistance, Temime et al. (Emerg Infect Dis 9:411–417, 2003) developed a stochastic SIS model, which was structured by the level of resistance of bacterial strains. Here we study the asymptotic properties of this model when the population size is large. To this end, we cast the model within the framework of measure valued processes, using point measures to represent the pattern of bacterial resistance in the compartments of colonized individuals. We first show that the suitably normalized model tends in probability to the solution of a deterministic differential system. Then we prove that the process of fluctuations around this limit tends in law to a Gaussian process in a space of distributions. These results, which generalize those of Kurtz (CBMS-NSF regional conference series in applied mathematics, vol 36. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1981, chap. 8) on SIR models, support the validity of the deterministic approximation and quantify the rate of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aldous D (1978) Stopping times and tightness. Ann Probab 6(2):335–340

    Article  MathSciNet  MATH  Google Scholar 

  • Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis. In: Lecture notes in statistics, vol 151. Springer, New York

  • Badrikian A (1996) Martingales hilbertiennes. Ann Math Blaise Pascal S3:115–171

  • Beran R, Ducharme GR (1991) Asymptotic theory for bootstrap methods in statistics. Université de Montréal, Centre de Recherches Mathématiques, Montreal

  • Cars O, Hogberg LD, Murray M, Nordberg O, Sivaraman S, Lundborg CS, So AD, Tomson G (2008) Meeting the challenge of antibiotic resistance. Br Med J 337(7672):726–728

    Google Scholar 

  • Clémençon S, Tran VC, de Arazoza H (2008) A stochastic SIR model with contact-tracing: large population limits and statistical inference. J Biol Dyn 2(4):392–414

    Article  MathSciNet  MATH  Google Scholar 

  • EARS-Network (2012) Antimicrobial resistance surveillance in Europe 2011. ECDC, Stockholm

  • Ethier SN, Kurtz TG (2005) Markov processes. Characterization and convergence. Wiley, Hoboken

    MATH  Google Scholar 

  • Ferland R, Fernique X, Giroux G (1992) Compactness of the fluctuations associated with some generalized nonlinear Boltzmann equations. Can J Math 44(6):1192–1205

    Article  MathSciNet  MATH  Google Scholar 

  • Fournier N, Méléard S (2004) A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Probab 14(4):1880–1919

    Article  MathSciNet  MATH  Google Scholar 

  • Jacod J, Shiryaev AN (2003) Limit theorems for stochastic processes. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol 288, 2nd edn. Springer, Berlin

  • Joffe A, Métivier M (1986) Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv Appl Probab 18(1):20–65

    Article  MathSciNet  MATH  Google Scholar 

  • Kufner A, Opic B (1984) How to define reasonably weighted Sobolev spaces. Comment Math Univ Carol 25(3):537–554

    MathSciNet  MATH  Google Scholar 

  • Kurtz TG (1981) Approximation of population processes. In: CBMS-NSF regional conference series in applied mathematics, vol 36. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

  • Maher M, Alemyehu W, Lakew T, Gaynor B, Hang S, Cevallos V, Keenan J, Lietman T, Porco T (2012) The fitness cost of antibiotic resistance in Streptococcus pneumoniae: insight from the field. PLoS One 7(1):e29,407

    Article  Google Scholar 

  • Martinez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321(5887):365–367

    Article  Google Scholar 

  • Méléard S (1998) Convergence of the fluctuations for interacting diffusions with jumps associated with Boltzmann equations. Stoch Stoch Rep 63(3–4):195–225

    Article  MathSciNet  MATH  Google Scholar 

  • Méléard S, Roelly S (1993) Sur les convergences étroite ou vague de processus à valeurs mesures. C R Acad Sci Paris Sér I Math 317(8):785–788

    MATH  Google Scholar 

  • Méléard S, Tran VC (2012) Slow and fast scales for superprocess limits of age-structured populations. Stoch Process Appl 122(1):250–276

    Article  MathSciNet  MATH  Google Scholar 

  • Métivier M (1982) Semimartingales, de Gruyter studies in mathematics, vol 2. Walter de Gruyter & Co., Berlin (a course on stochastic processes)

    Google Scholar 

  • Métivier M (1987) Weak convergence of measure valued processes using Sobolev-imbedding techniques. In: Stochastic partial differential equations and applications (Trento, 1985). Lecture notes in math., vol 1236. Springer, Berlin, pp 172–183

  • Oelschläger K (1990) Limit theorems for age-structured populations. Ann Probab 18(1):290–318

    Article  MathSciNet  MATH  Google Scholar 

  • Pollard D (1984) Convergence of stochastic processes. In: Springer series in statistics. Springer, New York

  • Prellner K, Hermansson A, White P, Melhus A, Briles D (1999) Immunization and protection in pneumococcal otitis media studied in a rat model. Microb Drug Resist 5(1):73–82

    Article  Google Scholar 

  • Rebolledo R (1980) Central limit theorems for local martingales. Z Wahrsch Verw Geb 51(3):269–286

    Article  MathSciNet  MATH  Google Scholar 

  • Revuz D, Yor M (1991) Continuous martingales and Brownian motion. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol 293. Springer, Berlin

  • Roelly-Coppoletta S (1986) A criterion of convergence of measure-valued processes: application to measure branching processes. Stochastics 17(1–2):43–65

    Article  MathSciNet  MATH  Google Scholar 

  • Temime L, Boelle P, Courvalin P, Guillemot D (2003) Bacterial resistance to penicillin G by decreased affinity of penicillin-binding proteins: a mathematical model. Emerg Infect Dis 9(4):411–417

    Article  Google Scholar 

  • Temime L, Boëlle PY, Thomas G (2005) Deterministic and stochastic modeling of pneumococcal resistance to penicillin. Math Popul Stud 12(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We wish to thank Michèle Thieullen for helpful discussions, and Viet Chi Tran for clarification of several points.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boëlle, PY., Thomas, G. Resistance to antibiotics: limit theorems for a stochastic SIS model structured by level of resistance. J. Math. Biol. 73, 1353–1378 (2016). https://doi.org/10.1007/s00285-016-0996-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-0996-2

Keywords

Mathematics Subject Classification

Navigation