Skip to main content
Log in

A review of spatial computational models for multi-cellular systems, with regard to intestinal crypts and colorectal cancer development

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Colon rectal cancers (CRC) are the result of sequences of mutations which lead the intestinal tissue to develop in a carcinoma following a “progression” of observable phenotypes. The actual modeling and simulation of the key biological structures involved in this process is of interest to biologists and physicians and, at the same time, it poses significant challenges from the mathematics and computer science viewpoints. In this report we give an overview of some mathematical models for cell sorting (a basic phenomenon that underlies several dynamical processes in an organism), intestinal crypt dynamics and related problems and open questions. In particular, major attention is devoted to the survey of so-called in-lattice (or grid) models and off-lattice (off-grid) models. The current work is the groundwork for future research on semi-automated hypotheses formation and testing about the behavior of the various actors taking part in the adenoma–carcinoma progression, from regulatory processes to cell–cell signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams J, Cory S (2007) The bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26: 1324–1337

    Google Scholar 

  • Adams J, Watt F (1989) Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature 340: 307–309

    Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular Biology of the Cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Andreu P et al (2005) Crypt-restricted proliferation and commitment to the paneth cell lineage following apc loss in the mouse intestine. Development 132: 1443–1451

    Google Scholar 

  • Andreu P et al (2008) A genetic study of the role of the wnt/-catenin signalling in paneth cell differentiation. Dev. Biol. 324: 288–296

    Google Scholar 

  • Armstrong P (1989) Cell sorting out: the self-assembly of tissues in vitro. Crit Rev Biochem Mol Biol 24: 119–149

    Google Scholar 

  • Armstrong P, Parenti D (1972) Cell sorting in the presence of cytochalasin b. J Cell Biol 55: 542–553

    Google Scholar 

  • Arvanitis D, Davy A (2008) Eph/eprhin signaling: networks. Genes Dev 22: 416–429

    Google Scholar 

  • Barker N et al (2007) Identification of stem cells in small intestine and colon by marker gene lgr5. Nature 449: 1003–1007

    Google Scholar 

  • Barker N, Ridgway R, van Es J, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke A, Sansom O, Clevers H (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457: 608–611

    Google Scholar 

  • Baron M (2003) An overview of the notch signalling pathway. Semin Cell Dev Biol 14: 113–119

    Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2010) NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 39(Database): D1005–D1010

    Google Scholar 

  • Basso K et al (2005) Reverse engineering of regulatory networks in human b cells. Nature Genetics 37: 382–390

    Google Scholar 

  • Batlle E et al (2002) Beta-catenin and tcf mediate cell positioning in the intestinal epithelium by controlling the expression of ephb/ephrinb. Cell 111: 251–263

    Google Scholar 

  • Bienz M, Clevers H (2000) Linking colorectal cancer to wnt signaling. Cell 103: 311–320

    Google Scholar 

  • Bjerknes M (1996) Expansion of mutant stem cell populations in the human colon. J Theor Biol 178: 381–385. doi:10.1006/jtbi.1996.0034

    Google Scholar 

  • Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. ii. Evidence from paneth cells in the newborn mouse. Am J Anat 160: 165–175

    Google Scholar 

  • Boland C (2002) Heredity nonpolyposis colorectal cancer (hnpcc). In: Vogelstein B, Kinzler KW (eds) The Genetic Basis of Human Cancer, 2nd edn. McGraw-Hill, New York, pp 307–321

    Google Scholar 

  • Boman B, Fields J, Bonham-Carter O, Runquist O (2001) Computer modeling implicates stem cell overproduction in colon cancer initiation. Cancer Res 61: 8408–8411

    Google Scholar 

  • Booth C, Brady G, Potten C (2002) Crown control in crypts. Nat Med 8: 1360–1361

    Google Scholar 

  • Bourgin C, Murai K, Richter M, Pasquale E (2007) The epha4 receptor regulates dendritic spine remodeling by affecting 1-integrin signaling pathways. J Cell Biol 178: 1295–1307

    Google Scholar 

  • Brenner S (1999) Theoretical Biology in the Thurd Millenium. Philos Trans R Soc Lond B 354: 1963–1965

    Google Scholar 

  • Brown S, Riehl T, Walker M, Geske M, Doherty J, Stenson W et al (2007) Myd88-dependent positioning of ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest 117: 258–269

    Google Scholar 

  • Bunow B, Kernevez J, Joly G, Thomas D (1980) Pattern formation by reaction-diffusion instabilities: application to morphogenesis in drosophila. J Theor Biol 84: 629–649

    MathSciNet  Google Scholar 

  • Burgess P et al (1997) The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J Neuropathol Exp Neurol 56: 701–713

    Google Scholar 

  • Buske P, Galle J, Barker N, Aust G, Clevers H, Loeffler M (2011) A comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt. PLoS Comput Biol 7(1): e1001,045

    Google Scholar 

  • Casciari J, Sotirchos S, Sutherland R (1992) Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular ph. J Cell Physiol 151: 386–394

    Google Scholar 

  • CellML (2001) http://www.cellml.org

  • Cerami EG, Bader GD, Gross BE, Sander C (2006) cPath: open source software for collecting, storing, and querying biological pathways. BMC Bioinformatics 7. doi:10.1186/1471-2105-7-497

  • Chen C et al (1997) Geometric control of cell life and death. Science 276: 1425–1428

    Google Scholar 

  • Christie GR, Nielsen PMF, Blackett SA, Bradley CP, Hunter PJ (2009) FieldML: concepts and implementation. Philos Trans R Soc 367: 1869–1884. doi:10.1098/rsta.2009.0025

    Google Scholar 

  • Chwalinski S, Potten C (1989) Crypt base columnar cells in ileum of bdf1 male mice-their numbers and some features of their proliferation. Am J Anat 186: 397

    Google Scholar 

  • Clevers H, Battle E (2006) Ephb/ephrinb receptors and wnt signaling in colorectal cancer. Cancer Res 66: 2–5

    Google Scholar 

  • Coussens L, Werb Z (2002) Inflammation and cancer. Nature 420: 860–867

    Google Scholar 

  • Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7: 349–359

    Google Scholar 

  • Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ (2003) An overview of CellML 1.1, a biological mdel description language. Simulation Trans Soc for Model Simul Int 79(12): 740–747

    Google Scholar 

  • Dada JO, Spasić I, Paton NW, Mendes P (2010) SBRML: a markup language for associating systems biology data with models. Bioinformatics 26(7): 932–938

    Google Scholar 

  • Damiani C, Serra R, Villani M, Kauffman S, Colacci A (2011) Cell–cell interaction and diversity of emergent behaviours. IET Syst Biol 5(2): 137–144

    Google Scholar 

  • Davidson E et al (2002) A genomic regulatory network for development. Science 295: 1669

    Google Scholar 

  • Deroanne C, Vouret-Craviari V, Wang B, Pouysségur J (2003) Ephrina1 inactivates integrin-mediated vascular smooth muscle cell spreading via the rac/pak pathway. J Cell Sci 116: 1367–1376

    Google Scholar 

  • Di Garbo A, Johnston MD, Chapman SJ, Maini PK (2010) Variable renewal rate and growth properties of cell populations in colon crypts. Phys Rev E 81(6): 061909. doi:10.1103/PhysRevE.81.061909

    Google Scholar 

  • D’Onofrio A, Tomlinson I (2007) A nonlinear mathematical model of cell turnover, differentiation and tumorigenesis in the intestinal crypt. J Theor Biol 244: 367–374

    MathSciNet  Google Scholar 

  • Dover R, Potten C (1988) Heteogeneity and cell cycle analyses from time-lapse studes of human keratinocytes in vitro. J Cell Sci 89: 359–364

    Google Scholar 

  • Drasdo D (2000) Buckling instabilities in one-layered growing tissues. Phys Rev Lett 84(19): 4244–4247

    Google Scholar 

  • Dubois M, Demè B, Gulik-Krzywicki T, Dedieu JC, Vautrin C, Dèsert S, Perez E, Zemb T (2001) Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature 411: 672–675. doi:10.1038/35079541

    Google Scholar 

  • Dubois M, Lizunov V, Meister A, Gulik-Krzywicki T, Verbavatz JM, Perez E, Zimmerberg J, Zemb T (2004) Shape control through molecular segregation in giant surfactant aggregates. Proc Natl Acad Sci USA 101: 15082–15087

    Google Scholar 

  • Egeblad M, Nakasone E, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18: 884–901

    Google Scholar 

  • Falcone J, Chopard B, Hoekstra A (2010) MML: towards and multiscale modeling language. Procedia Comput Sci 1: 819–826

    Google Scholar 

  • Fearon E, Volgestein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    Google Scholar 

  • Fevr T, Robine S, Louvard D, Huelsken J (2007) Wnt/beta-catenin is essential for intestinal homeostasis and mainteinance of intestinal stem cells. Mol Cell Biol 27: 7551–7559

    Google Scholar 

  • Fischer I et al (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15: 297–310

    Google Scholar 

  • Fotos J et al (2006) Automated time-lapse microscopy and high-resolution tracking of cell migration. Cytotechnology 51: 7–19

    Google Scholar 

  • Frank S (2007) Dynamics of cancer. Princeton University Press, Princeton

    Google Scholar 

  • Free S et al (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435: 964–968

    Google Scholar 

  • Freyer J, Sutherland R (1986) Regulation of growth saturation and development of necrosis in emt6/ro multicellular spheroids by the glucose and oxygen supply. Cancer Res 46: 3504–3512

    Google Scholar 

  • Galiatsatos P, Foulkes W (2006) Familial adenomatous polyposis. Am J Gastroenterol 101: 385–398

    Google Scholar 

  • Galle J, Aust G, Schaller G, Beyer T, Drasdo D (2006) Individual cell-based models of the spatial-temporal organization of multicellular systemsóachievements and limitations. Cytometry Part A 69A(7): 704–710 doi:10.1002/cyto.a.20287

    Google Scholar 

  • Galle J, Hoffmann M, Aust G (2009) From single cells to tissue architecture: a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. J Math Biol 58: 261–283 doi:10.1007/s00285-008-0172-4

    MathSciNet  MATH  Google Scholar 

  • Galle J, Loeffler M, Drasdo D (2005) Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophys J 88: 62–75. doi:10.1529/biophysj.104.041459

    Google Scholar 

  • Galle J, Sittig D, Hanisch I, Wobus M, Wandel E, Loeffler M, Aust G (2006) Individual cell-based models of tumor-environment interactions: multiple effects of CD97 on tumor invasion. Am J Pathol 169(5): 1802–1811 doi:10.2353/ajpath.2006.060006

    Google Scholar 

  • Gene Ontology Consortium: (2006) The gene ontology (GO) project in 2006. Nucleic Acid Res (Database issue) 34: D322–D326

    Google Scholar 

  • Gerike T, Paulus U, Potten C, Loeffler M (1998) A dynamic model of proliferation and differentiation in the intestinal crypt based on a hypothetical intraepithelial growth factor. Cell Prolif 31:93–110. http://www.ncbi.nlm.nih.gov/pubmed/9745618

    Google Scholar 

  • Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem 104: 1876–1889

    Google Scholar 

  • Gierer A et al (1972) Regeneration of hydra from reaggregated cells. Nat New Biol 91: 98–101

    Google Scholar 

  • Gierer A, Meinhardt H (1974) Biological pattern formation involving lateral inhibition. Lect Math Life Sci 7: 163–183

    MathSciNet  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22: 403–434

    MathSciNet  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 2340–2361

  • Glauche I, Cross M, Loeffler M, Roeder I (2007) Lineage specification of hematopoietic stem cells: Mathematical modeling and biological implications. Stem cells 25: 1791–1799

    Google Scholar 

  • Goss K, Groden J (2000) Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol 18: 1967–1979

    Google Scholar 

  • Graner F, Glazier J (1992) Simulation of biological cell sorting using a two-dimensional extended potts model. Phys Rev Lett 69: 2013–2017

    Google Scholar 

  • Graner F, Glazier J (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47:2128–2154. http://graner.net/francois/publis/glazier_rearrangement.pdf

  • Graudenzi A, Caravagna G, De Matteis G, Mauri G, Antoniotti M (2012) A multiscale model of intestinal crypts dynamics. In: Proceedings of the Italian Workshop on Artificial Life and Evolutionary Computation, WIVACE 2012. ISBN: 978-88-903581-2-8

  • Greenberg J, Hassard B, Hastings S (1978) Pattern formation and periodic structures in systems modeled by reaction-diffusion equations. Bull Am Math Soc 84: 1296–1327

    MathSciNet  MATH  Google Scholar 

  • Gregorieff A, Pinto D, Begthel H, Destree O, Kielman M, Clevers H (2005) Expression pattern of wnt signaling components in the adult intestine. Gastroenterology 129: 626–638

    Google Scholar 

  • Grindrod P (1991) Patterns and waves: theory and applications of reaction–diffusion equations. Oxford Applied Mathematics & Computing Science, Oxford

    MATH  Google Scholar 

  • Hafner C et al (2005) Ephrin-b2 is differentially expressed in the intestinal epithelium in crohn’s disease and contributes to accelerated epithelial wound healing in vitro. World J Gastroenterol 11: 4024–4031

    Google Scholar 

  • Haga H et al (2005) Collective movemente of epithelial cells on a collagen gel substrate. Biophys J 88: 2250–2256

    Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenetic switch during tumorigenesis. Cell 86: 353–364

    Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646–674

    Google Scholar 

  • Harrison NC (2010) BioCellSim 1.0 Simulation Software. http://pcwww.liv.ac.uk/~mf0u4027/biocellsim.html

  • Hartsock A, Nelson W (2007) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. doi:10.1016/j.bbamem.2007.07.012

  • Haselwandter CA, Phillips R (2011) Elastic energy of polyhedral bilayer vesicles. Phys Rev E 83(6): 061,901. doi:10.1103/PhysRevE.83.061901

    Google Scholar 

  • Heckera M et al (2009) Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96: 86–103

    Google Scholar 

  • Hocker M, Wiedenmann B (1998) Molecular mechanisms of enteroendocrine differentiation. Ann NY Acad Sci 859: 160–174

    Google Scholar 

  • Hoehme S, Drasdo D (2010) A cell-based simulation software for multicellular systems. Bioinformatics 26(20): 2641–2642

    Google Scholar 

  • Hogeweg P (2000) Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J Theor Biol 203(4): 317–333 doi:10.1006/jtbi.2000.1087

    Google Scholar 

  • Hogeweg P (2002) Computing an organism: on the interface between informatic and dynamic processes. Biosystems 64(1-3): 97–109 doi:10.1016/S0303-2647(01)00178-2

    Google Scholar 

  • Holmberg J et al (2006) Ephb receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell 125: 1151–1163

    Google Scholar 

  • Honda H, Yamanaka H, Eguchi G (1986) Transformation of a polygonal cellular pattern during sexual maturation of the avian oviduct epithelium. J Embryol Exp Morphol 98: 1–19

    Google Scholar 

  • Huynh-Do U, Stein E, Lane AA, Liu H, Cerretti DP, Daniel TO (1999) Surface densities of ephrin-b1 determine ephb1-coupled activation of cell attachment through avb3 and a5b1 integrins. EMBO J 18: 2165–2173

    Google Scholar 

  • Ikushima H, Miyazono K (2010) Tgfbeta signaling: a complex web in cancer progression. Nat Rev Cancer 10: 415–424

    Google Scholar 

  • Ireland H, Houghton C, Howard L, Winton D (2005) Cellular inheritance of a cre-activated reporter gene to determine paneth cell longevity in the murine small intestine. Dev Dyn 233: 1332–1336

    Google Scholar 

  • Jass JR (2007) Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50: 113–130

    Google Scholar 

  • Jass JR, Whitehall VL, Young J, Leggett BA (2002) Emerging concepts in colorectal neoplasia. Gastroenterology 123: 862–876

    Google Scholar 

  • Jass JR, Young J, Leggett BA (2002) Evolution of colorectal cancer: change of pace and change of direction. J Gastroenterol Hepatol 17: 17–26

    Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics 2010. CA Cancer J Clin 60: 277–300

    Google Scholar 

  • Jensen U, Lowell S, Watt F (1999) The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development 126: 2409–2418

    Google Scholar 

  • Jouanneau J, Tucker G, Boyer B, Vallés AJPT (1992) Epithelial cell plasticity in neoplasia. Cancer Cells 3: 525–529

    Google Scholar 

  • Kaneko K (2006) Life: an introduction to complex systems biology. Springer, Berlin

    MATH  Google Scholar 

  • Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224: 177

    Google Scholar 

  • Kauffman S (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22: 437–467

    MathSciNet  Google Scholar 

  • Kauffman S (1995) At home in the universe. Oxford University Press, Oxford

    Google Scholar 

  • Kaur P, Potten C (1986) Circadian variation in migration velocity in small intestinal epithelium. Cell Tissue Kinet 19: 591

    Google Scholar 

  • Kedinger M et al (1986) Fetal gust menschyme induces differentiation of cultured intestinal endonormal and crypt cells. Dev Biol 113: 474–483

    Google Scholar 

  • Kempf H, Bleicher M, Meyer-Hermann M (2010) Spatio-temporal cell dynamics in tumour spheroid irradiation. Eur Phys J D 60(1): 177–193

    Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87: 159–170

    Google Scholar 

  • Kinzler KW, Vogelstein B (2002) Colorectal tumors. In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Kirouac D, Ito C, Csaszar E, Roch A, Yu M, Sykes E, Bader G, Zandstra P (2010) Dynamic interaction networks in a hierarchically organized tissue. Mol Syst Biol 6: 417

    Google Scholar 

  • Kitano H (2001) Foundations of systems biology. MIT Press, Massachusetts

    Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 206–210

  • Koga S, Kuramoto Y (1980) Localized patterns in reaction-diffusion systems. Prog Theor Phys 63: 106–121

    Google Scholar 

  • Köhn D, Novère NL (2008) SED-ML - An XML Format for the Implementation of the MIASE Guidelines. In: Computational methods n systems biology. Lncs, vol. 5307. Springer, Berlin, pp 176–190

  • Kohn K (1998) Functional capabilities of molecular network components controlling the mammalian g1/s cell cycle phase transition. Oncogene 16: 1065–1075

    Google Scholar 

  • Koinuma K, Shitoh K, Miyakura Y et al (2004) Mutations of braf are associated with extensive hmlh1 promoter methylation in sporadic colorectal carcinomas. Int J Cancer 108: 237–242

    Google Scholar 

  • Komarova N, Sengupta A, Nowak M (2003) Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J Theor Biol 223: 433–450. doi:10.1016/S0022-5193(03)00120-6

    MathSciNet  Google Scholar 

  • Komarova N, Wang L (2004) Initiation of colorectal cancer: where do the two hits hit?. Cell Cycle 3: 1558–1565. doi:10.4161/cc.3.12.1186

    Google Scholar 

  • Komarova N, Wodarz D (2004) The optimal rate of chromosome loss for the inactivation of tumor suppressor genes in cancer. Proc Natl Acad Sci USA 101: 7017–7021. doi:10.1073/pnas.0401943101

    Google Scholar 

  • Korinek V, Barker N, Moerer P, van Donselaar E, Huls G et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking tcf-4. Nat Genet 19: 379–383

    Google Scholar 

  • Kosinski C, Li V, Chan A, Zhang J, Ho C, Tsui W et al (2007) Gene expression patterns of human colon tops and basal crypts and bmp antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 104: 15418–15423

    Google Scholar 

  • Kullander K, Klein R (2002) Mechanisms and functions of eph and ephrin signaling. Nat Rev Mol Cell Biol 3: 475–486

    Google Scholar 

  • Kunz-Schughart L et al (2000) Proliferative activity and tumorigenic conversion: impact on cellular metabolism in 3-d culture. J Physiol Cell Physiol 278: 765

    Google Scholar 

  • Laird D (1996) The life cycle of a connexin: gap junction formation, removal, and degradation. J Bioenerg Biomembr 28: 311–318

    Google Scholar 

  • Landry J, Freyer J, Sutherland R (1981) Shedding of mitotic cells from the surface of multicell spheroids during growth. J Cell Physiol 106: 23–32

    Google Scholar 

  • Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34(Database issue): D689–D691

    Google Scholar 

  • Lee T et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298: 799–804

    Google Scholar 

  • Lemmon M, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141: 1117–1134

    Google Scholar 

  • Lewis J (1998) Notch signalling: a short cut to the nucleus. Nature 393: 304–305

    Google Scholar 

  • Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4: 92

    Google Scholar 

  • Li Y et al (1994) The crypt cycle in mouse small intestinal epithelium. J Cell Sci 107: 3271–3279

    Google Scholar 

  • Lin G, Xu N, Xi R (2008) Paracrinewingless signalling controls selfrenewal of drosophila intestinal stem cells. Nature 455: 1119–1123

    Google Scholar 

  • Loeffler M, Potten C, Paulus U, Glatzer J, Chwalinski S (1988) Interstinal crypt proliferation. II. Computer modeling of mitotic index data provides further evidence for lateral and vertical cell migration in the absence of mitotic activity. Cell Tissue Kinet 21: 247–258

    Google Scholar 

  • Loeffler M, Stein R, Wichmann H, Potten C, Kaur P, Chwalinski S (1986) Intestinal cell proliferation. I. A comprehensive model of steady-state proliferation in the crypt. Cell Tissue Kinet 19: 627–645

    Google Scholar 

  • Logan C, Nusse R (2004) The wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20: 781–810

    Google Scholar 

  • Lopez-Garcia CA, Klein M, Simons B, Winton D (2010) Intestinal stem cell replacement follows a patter of neutral drift. Science 330: 822–825

    Google Scholar 

  • Lowell S et al (2000) Stimulating of human epidermal differentiation by delta–notch signalling at the boundaries of stem-cells clusters. Curr Biol 10: 491–500

    Google Scholar 

  • Luebeck E, Moolgavkar S (2002) Multistage carcinogenesis and the incidence of colorectal cancer. Proc Natl Acad Sci USA 99: 15095–15100. doi:10.1073/pnas.222118199

    Google Scholar 

  • Macklin P et al (2009) Multiscale modeling and nonlinear simulation of vascular tumour growth. J Math Biol 58: 765–798

    MathSciNet  Google Scholar 

  • Macklin P, Edgerton M, Thompson A, Cristini V (2010) MultiCellXML: an open XML data standard for multicell agent models. http://multicellxml.sourceforge.net

  • Multiscale Applications on European e-Infrastructures (2010) http://www.mapper-project.eu

  • Mardis E (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24: 133–141

    Google Scholar 

  • Marshman E, Booth C, Potten C (2002) The intestinal epithelial stem cells. Bioessays 24: 91–98

    Google Scholar 

  • Marshman F et al (2001) Caspase activation during spontaneous and radiation-induced apoptosis in the murine intestine. J Pathol 195: 285–292

    Google Scholar 

  • Martiel JL, Goldbeter A (1987) A model based on receptor desensitization for cyclic amp signaling in dictyostelium cells. Biophys J 52: 807–828 doi:10.1016/S0006-3495(87)83275-7

    Google Scholar 

  • Martone ME, Tran J, Wong WW, Sargis J, Fong L, Larson S, Lamont SP, Gupta A, Ellisman MH (2008) The Cell Centered Database project: an update on building community resources for managing and sharing 3D imaging data. J Struct Biol 161(3): 220–231

    Google Scholar 

  • Mathew JP, Taylor BS, Bader GD, Pyarajan S, Antoniotti M, Chinnaiyan AM, Sander C, Burakoff SJ, Mishra B (2003) From bytes to bedside: data integration and computational biology for translational cancer research. PLoS Comput Biol 102(18): 6245–6250. doi:10.1371/journal.pcbi.0030012

    Google Scholar 

  • McClay D, Ettensohn C (1987) Cell adhesion in morphogenesis. A. Rev Cell Biol 3: 319–345

    Google Scholar 

  • Medema JP, Vermulen L (2011) Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474(7351): 318–326

    Google Scholar 

  • Meineke F, Potten C, Loeffler M (2001) Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif 34(4): 253–266

    Google Scholar 

  • Meinhardt H, Gierer A (1974) Applications of a theory of biological pattern formation based on lateral inhibition. J Cell Sci 15: 321–346

    Google Scholar 

  • Merks RM, Brodsky SV, Goligorksy MS, Newman SA, Glazier JA (2006) Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol 289(1): 44–54 doi:10.1016/j.ydbio.2005.10.003

    Google Scholar 

  • Merks RM, Glazier JA (2005) A cell-centered approach to developmental biology. Phys A Stat Mech Appl 352(1): 113–130 doi:10.1016/j.physa.2004.12.028

    Google Scholar 

  • Miao H, Burnett E, Kinch M, Simmon E, Wang B (2000) Activation of epha2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2: 62–69

    Google Scholar 

  • Miao H, Strebhardt K, Pasquale E, Shen T, Guan J, Wang B (2005) Inhibition of integrin-mediated cell adhesion but not directional cell migration requires catalytic activity of ephb3 receptor tyrosine kinase. role of rho family small gtpases. J Biol Chem 2: 923–932

    Google Scholar 

  • Michaelis L, Menten M (1913) Die Kinetik der Invertinwirkung. Biochemische Zeitschrift 49: 333–369

    Google Scholar 

  • Mombach J, de Almeida R, Iglesias J (1993) Mitosis and growth in biological tissues. Phys Rev E 48: 598

    Google Scholar 

  • Monk N, Owen M (2011) http://www.cellsignet.org.uk/multicellular2011/

  • Morel D, Marcelpoil R, Brugal G (2001) A proliferation control network model: The simulation of two-dimensional epithelial homeostasis. Acta Biotheoretica 49: 219–234 doi:10.1023/A:1014201805222

    Google Scholar 

  • Mumm J, Kopan R (2000) Notch signaling: from the outside in. Dev Biol 228: 151–165

    Google Scholar 

  • Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P (1995) Regulation of intracellular beta-catenin levels by adenomatous polyposis coli (apc) tumor-suppressor protein. Proc Natl Acad Sci USA 92: 3046–3050

    Google Scholar 

  • Nicol A, Garrod D (1979) The sorting out of embryonic cells in monolayer, the differential adhesion hypothesis and the non-specificity of cell adhesion. J Cell Sci 38: 249–266

    Google Scholar 

  • Nicol A, Garrod D (1982) Fibronectin, intercellular junctions and the sorting-out of chick embryonic tissue cells in monolayer. J Cell Sci 54: 357–372

    Google Scholar 

  • Nowak M, Komarova N, Sengupta A, Jallepalli P, Shih I, Vogelstein B, Lengauer C (2002) The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA 99: 16226–16231. doi:10.1073/pnas.202617399

    Google Scholar 

  • Nowak M, Michor F, Iwasa Y (2003) The linear process of somatic evolution. Proc Natl Acad Sci USA 100: 14966–14969. doi:10.1073/pnas.2535419100

    Google Scholar 

  • Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih I, Vogelstein B, Lengauer C (2002) The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA 99: 16226–16231

    Google Scholar 

  • Nucci M, Robinson C, Longo P, Campbell PSRH (1997) Phenotypic and genotypic characteristics of aberrant crypt foci in human colorectal mucosa. Hum Pathol 28: 1396–1407

    Google Scholar 

  • Oki E, Oda S, Maehara Y, Sugimachi K (1999) Mutated gene-specific phenotypes of dinucleotide repeat instability in human colorectal carcinoma cell lines deficient in dna mismatch repair. Oncogene 18: 2143–2147

    Google Scholar 

  • Olson E et al (2006) Gene regulatory networks in the evolution and development of the heart. Science 313: 1922

    Google Scholar 

  • Othmer H, Pate E (1980) Scale-invariance in reaction-diffusion models of spatial pattern formation. Proc Natl Acad Sci USA 77: 4180–4184

    Google Scholar 

  • Pasquale E (2005) Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol 6: 462–475

    Google Scholar 

  • Paulus U, Loeffler M, Zeidler J, Owen G, Potten CS (1993) The differentiation and lineage development of goblet cells in the murine small intestinal crypt: experimental and modelling studies. J Cell Sci 106: 473–483

    Google Scholar 

  • Paulus U, Potten C, Loeffler M (1992) A model of the control of cellular regeneration in the intestinal crypt after perturbation based solely on local stem cell regulation. Cell Prolif 25: 559–578. doi:10.1111/j.1365-2184.1992.tb01460.x

    Google Scholar 

  • Peixoto T, Drossel B (2009) Noise in random boolean networks. Phys Rev E 79: 036108–036117

    Google Scholar 

  • Pinto D, Gregorieff A, Beghtel H, Clevers H (2003) Canonical wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17: 1709–1713

    Google Scholar 

  • Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, Mirams GR, Murray P, Osborne JM, Walter A, Chapman SJ, Garny A, van Leeuwen IM, Maini PK, RodrÌguez B, Waters SL, Whiteley JP, Byrne HM, Gavaghan DJ (2009) Chaste: a test-driven approach to software development for biological modelling. Comput Phys Commun 180(12): 2452–2471 doi:10.1016/j.cpc.2009.07.019

    MATH  Google Scholar 

  • Poliakov A, Cotrina M, Wilkinson D (2004) Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell 7: 465–480

    Google Scholar 

  • Porter E, Bevins C, Ghosh D, Ganz T (2002) The multifaceted paneth cell. Cell Mol Life Sci 59: 156–170

    Google Scholar 

  • Potten C et al (1988) Scoring mitotic activity in longitudinal sections of crypts of the small intestine. Cell Tissue Kinet 21: 231

    Google Scholar 

  • Potten C, Gandara R, Mahida Y, Loeffler M, Wright N (2009) The stem cells of small intestinal crypts: where are they?. Cell Prolif 42: 731–750

    Google Scholar 

  • Potten C, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. lessons from the crypt. Development 110: 1001–1020

    Google Scholar 

  • Potten C, Morris R (1988) Epithelial stem cells in vivo. J Cell Sci 10: 45–62

    Google Scholar 

  • Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78: 219–243

    Google Scholar 

  • Pradal C, Dufour-Kowalski S, Boudon F, Fournier C, Godin C (2008) Openalea: a visual programming and component-based software platform for plant modeling. Funct Plant Biol 35(9, 10):751–760. http://www-sop.inria.fr/virtualplants/Publications/2008/PDBFG08a

    Google Scholar 

  • Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C (2003) The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 3: 695–701

    Google Scholar 

  • Ramakrishnan N, Tadepalli S, Watson LT, Helm RF, Antoniotti M, Mishra B (2010) Reverse engineering dynamic temporal models of biological processes and their relationships. PNAS 107(28): 12511–12516

    Google Scholar 

  • Ratdke F, Clevers H (2005) Self-renewal and cancer of the gut: tho sides of a coin. Science 307: 1904–1909

    Google Scholar 

  • Reid JF, Gariboldi M, Sokolova V, Capobianco P, Lampis A, Perrone F, Signoroni S, Costa A, Leo E, Pilotti S, Pierotti MA (2009) Integrative approach for prioritizing cancer genes in sporadic colon cancer. Genes Chromosom Cancer 48(11): 953–962

    Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434: 843–850

    Google Scholar 

  • Reya T, Morrison S, Clarke M, Weissman I (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105–111

    Google Scholar 

  • Roeder I, Braesel K, Lorenz R, Loeffler M (2007) Stem cell fate analysis revisited: Interpretation of individual clone dynamics in the light of a new paradigm of stem cell organization. J Biomed Biotechnol. doi:10.1155/2007/84656

  • Roeder I, Loeffler M (2002) A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity. Exp Hematol 30: 853–861

    Google Scholar 

  • Rubinfeld B, Robbins P, EL Gamil M, Albert I, Porfiri E, Polakis P (1997) Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275: 1790–1792

    Google Scholar 

  • Ruoslahti E (1997) Stretching is good for a cell. Science 276: 1345–1346

    Google Scholar 

  • Saito T, Masuda N, Miyazaki T, Kanoh K, Suzuki H, Shimura T, Asao T, Kuwano H (2004) Expression of epha2 and e-cadherin in colorectal cancer: correlation with cancer metastasis. Oncol Rep 11: 605–611

    Google Scholar 

  • Samson O et al (2004) Loss of apc in vivo immediately perturbs wnt signaling, differentiation and migration. Genes Dev 18: 1385–1390

    Google Scholar 

  • Samuel S, Walsh R, Webb J, Robins A, Potten C, Mahida Y (2009) Characterization of putative stem cells in isolated human colonic crypt epithelial cells and their interactions with myofibroblasts. Am J Physiol Cell Physiol 296: C296–C305

    Google Scholar 

  • Sancho E, Batlle E, Clevers H (2004) Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol 20: 695–723

    Google Scholar 

  • Sandersius S, Weijer C, Newman T (2011) Emergent cell and tissue dynamics from subcellular modeling of active bio-mechanical processes. Phys Biol 8: 045007

    Google Scholar 

  • Sato T et al (2011) Paneth cells constitute the niche for lgr5 stem cells in intestinal crypts. Nature 469: 415–418

    Google Scholar 

  • Savill NJ, Hogeweg P (1997) Modelling morphogenesis: from single cells to crawling slugs. J Theor Biol 184(3): 229–235 doi:10.1006/jtbi.1996.0237

    Google Scholar 

  • Savill NJ, Sherratt JA (2003) Control of epidermal stem cell clusters by notch-mediated lateral induction. Dev Biol 258(1): 141–153 doi:10.1016/S0012-1606(03)00107-6

    Google Scholar 

  • System Biology Markup Language (2002) http://www.smb-sbml.org/

  • Schaff J (2011) SBML Spatial Geometry Extension Proposal. proposal at http://sbml.org

  • Schaller G, Meyer-Hermann M (2005) Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model. Phys Rev E 71(5): 051910. doi:10.1103/PhysRevE.71.051910

    MathSciNet  Google Scholar 

  • Schroder N, Gossler A (2002) Expression of notch pathway components in fetal and adult mouse small intestine. Gene Expr Patterns 2: 247–250

    Google Scholar 

  • Sekimura T, Kobuchi Y (1986) A spatial pattern formation model for dictyostelium discoideum. J Theor Biol 122: 325–338

    MathSciNet  Google Scholar 

  • Serini G et al (2003) Modeling the early stages of vascular network assembly. EMBO J 22: 1771–1779

    Google Scholar 

  • Serra R, Villani M, Barbieri A, Kauffman S, Colacci A (2010) On the dynamics of random boolean networks subject to noise: attractors, ergodic sets and cell types. J Theor Biol 265: 185–193

    MathSciNet  Google Scholar 

  • Shirinifard A, Gens JS, Zaitlen BL, Poplawski NJ, Swat M, Swat M, Swat M (2009) 3d multi-cell simulation of tumor growth and angiogenesis. PLoS ONE 4(10): e7190 doi:10.1371/journal.pone.0007190

    Google Scholar 

  • Siegert F, Weijer C (1992) Three dimensional scroll waves organise dictyostelium slugs. Proc Natl Acad Sci USA 89: 6433–6437

    Google Scholar 

  • Smallwood R, Holcombe W, Walker D (2004) Development and validation of computational models of cellular interaction. J Mol Histol 35: 659–665 doi:10.1007/s10735-004-2660-1

    Google Scholar 

  • The OBI Consortium: (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnol 25: 1251–1255

    Google Scholar 

  • Snippert H et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing lgr5 stem cells. Cell 143: 134–144

    Google Scholar 

  • Springer W, Barondes S (1978) Direct measurement of species specific cohesion in cellular slime molds. J Cell Biol 79: 937–942

    Google Scholar 

  • Steimberg M, Garrod D (1975) Observations on the sorting-out of embryonic cells in monolayer culture. J Cell Sci 18: 385–403

    Google Scholar 

  • Stein L (2004) Reactome site. http://www.reactome.org

  • Steinberg M (1962) On the mechanism of tissue reconstruction by dissociated cells. i population kinetics, differential adhesiveness, and the absence of directed migration. Proc Natl Acad Sci USA 48: 1577–1582

    Google Scholar 

  • Sternfeld J (1979) Evidence for differential cellular adhesion as the mechanism of sorting out of various slime mold species. J Embryol Exp Morphol 53: 163–177

    Google Scholar 

  • Sulsky D, Childress S, Percus JK (1984) A model of cell sorting. J Theor Biol 106(3): 275–301 doi:10.1016/0022-5193(84)90031-6

    Google Scholar 

  • Takeuchi I, Kakutani T, Tasaka M (1988) Cell behavior during formation of prestalk/prespore pattern in submerged agglomerates of dictyostelium discoideum. Dev Genet 9: 607–614

    Google Scholar 

  • Takeuchi I, Tasaka M (1989) Formation of differentiation pattern in dictyostelium discoideum. Genome 31: 620–624

    Google Scholar 

  • Talmadge J, Fidler I (2010) Aacr centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70: 5649–5669

    Google Scholar 

  • Technau U, Holstein T (1992) Cell sorting during the regeneration of hydra from reaggregated cells. Dev Biol 151: 117–127

    Google Scholar 

  • Tepass U, Godt D, Winklbauer R (2002) Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr Opin Genet Dev 12: 572–582

    Google Scholar 

  • The Cancer Genome Atlas. http://cancergenome.nih.gov/

  • Thibodeau S, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260: 816–819

    Google Scholar 

  • Thirlwell C et al (2010) Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology 138: 1441–1454

    Google Scholar 

  • Thomas W, Yancey J (1988) Can retinal adhesion mechanisms determine cell-sorting patterns: a test of the differential adhesion hypothesis. Development 103: 37–48

    Google Scholar 

  • Toyota M et al (1999) Cpg island methylator phenotype in colorectal cancer. PNAS 96: 8681–8686

    Google Scholar 

  • Tsubouchi S (1983) Theoretical implications for cell migration through the crypt and the villus of labeling studies conducted at each position within the crypt. Cell Tissue Kinet 16: 441–456

    Google Scholar 

  • Turner S, Sherratt JA (2002) Intercellular adhesion and cancer invasion: a discrete simulation using the extended potts model. J Theor Biol 216(1): 85–100 doi:10.1006/jtbi.2001.2522

    MathSciNet  Google Scholar 

  • Vajdic C, Leeuwen M (2009) Cancer incidence and risk factors after solid organ transplantation. Int J Cancer 125: 1747–1754

    Google Scholar 

  • van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I et al (2002) The beta-catenin/tcf-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111: 241–250

    Google Scholar 

  • van der Flier L et al (2009) Transcription factor achaete scute-like 2 constrol intestinal stem cell fate. Cell 136: 903–912

    Google Scholar 

  • van der Flier L, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71: 241–260

    Google Scholar 

  • van Es J et al (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435: 959–963

    Google Scholar 

  • van Es J, Jay P, Gregorieff A, van Gijn M, Jonkheer S, Hatzis P et al (2005) Wnt signaling induces maturation of paneth cells in intestinal crypt. Nat Cell Biol 7: 381–386

    Google Scholar 

  • van Es JH, van Gijn ME, Riccio OMv, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H (2005) Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435: 959–963 doi:10.1038/nature03659

    Google Scholar 

  • van Leeuwen IM, Byrne HM, Jensen OE, King JR (2007) Elucidating the interactions between the adhesive and transcriptional functions of [beta]-catenin in normal and cancerous cells. J Theor Biol 247(1): 77–102 doi:10.1016/j.jtbi.2007.01.019

    Google Scholar 

  • van Leeuwen IMM, Byrne HM, Jensen OE, King JR (2006) Crypt dynamics and colorectal cancer: advances in mathematical modelling. Cell Prolif 39(3): 157–181 doi:10.1111/j.1365-2184.2006.00378.x

    Google Scholar 

  • Villani M, Barbieri A, Serra R (2011) A dynamical model of genetic networks for cell differentiation. PLoS ONE 6(3): e17703 doi:10.1371/journal.pone.0017703

    Google Scholar 

  • Wagner A (2002) Estimating coarse gene network structure from large-scale gene gene perturbation data. Genome Res 12: 309–315

    Google Scholar 

  • Walker D, Southgate J, Hill G, Holcombe M, Hose D, Wood S, Mac Neil S, Smallwood R (2004) The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems 76(1-3): 89–100 doi:10.1016/j.biosystems.2004.05.025

    Google Scholar 

  • Wang B (2011) Cancer cells exploit the eph-ephrin system to promote invasion and metastasis: tales of unwitting partners. Sci Signal 4(175): 128

    Google Scholar 

  • Wang M, Schaap P (1989) Ammonia depletion and dif trigger stalk cell differentiation in intact dictyostelium discoideum slugs. Development 105: 569–574

    Google Scholar 

  • Wehrle J et al (2000) Metabolism of alternative substrates and the bioenergetic status of emt6 tumor cell spheroids. NMR Biomed 13: 349–360

    Google Scholar 

  • Wilkinson DG (2003) Multiple roles of eph receptors and ephrins in neural development. Nat Rev Neurosci 2: 155–164

    Google Scholar 

  • Winton D, Ponder B (1990) Stem-cell organization in mouse small intestine. Proc Biol Sci 241: 13–18

    Google Scholar 

  • Winton DJ, Blount M, Ponder B (1988) A clonal marker induced by mutation in mouse intestinal epithelium. Nature 333: 463–466

    Google Scholar 

  • Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology (Bethesda) 25: 85–101

    Google Scholar 

  • Wodarz A (1998) Mechanisms of wnt signaling in development. Annu Rev Cell Dev Biol 14: 59–88

    Google Scholar 

  • Wodarz D, Komarova N (2005) Computational biology of cancer: lecture notes and mathematical modeling. World Scientific Publishing, Hackensack

    MATH  Google Scholar 

  • Wong MH (2004) Regulation of intestinal stem cells. J Invest Dermatol Symp Proc 9: 224–228

    Google Scholar 

  • Wong SY, Chiam KH, Lim CT, Matsudaira P (2010) Computational model of cell positioning: directed and collective migration in the intestinal crypt epithelium. J R Soc Interf 7(Suppl 3): S351–S363. doi:10.1098/rsif.2010.0018.focus

    Google Scholar 

  • Wright N, Alison M (1984) The biology of epithelial cell populations. Clarendon Press, Oxford

    Google Scholar 

  • Xu Q, Mellitzer G, Robinson V, Wilkinson D (1999) In vivo cell sorting in complementary segmental domains mediated by eph receptors and ephrins. Nature 399: 267–271

    Google Scholar 

  • Yen T, Wright N (2006) The gastrointestinal tract stem cell niche. Stem Cell Rev 2: 203–212

    Google Scholar 

  • Zheng X, Wise S, Cristini V (2005) Nonlinear simlation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull Math Biol 67: 211–259

    MathSciNet  Google Scholar 

  • Zimmerman W, Weijer C (1993) Analysis of cell cycle progression during the development of dictyostelium and its relationship to differentiation. Dev Biol 160: 178–185

    Google Scholar 

  • Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5: 873–878

    Google Scholar 

  • Zou J, Wang B, Kalo M, Zisch A, Pasquale E, Ruoslahti E (1999) An eph receptor regulates integrin activity through r-ras. Proc Natl Acad Sci 96: 13813–13818

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Graudenzi.

Additional information

This work has been supported by Regione Lombardia under the research project Retro Net through the grant 12-4-5148000-40; U.A 053.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Matteis, G., Graudenzi, A. & Antoniotti, M. A review of spatial computational models for multi-cellular systems, with regard to intestinal crypts and colorectal cancer development. J. Math. Biol. 66, 1409–1462 (2013). https://doi.org/10.1007/s00285-012-0539-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0539-4

Keywords

Mathematics Subject Classification

Navigation