Skip to main content
Log in

Finite volume and asymptotic methods for stochastic neuron models with correlated inputs

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a pair of stochastic integrate and fire neurons receiving correlated stochastic inputs. The evolution of this system can be described by the corresponding Fokker–Planck equation with non-trivial boundary conditions resulting from the refractory period and firing threshold. We propose a finite volume method that is orders of magnitude faster than the Monte Carlo methods traditionally used to model such systems. The resulting numerical approximations are proved to be accurate, nonnegative and integrate to 1. We also approximate the transient evolution of the system using an Ornstein–Uhlenbeck process, and use the result to examine the properties of the joint output of cell pairs. The results suggests that the joint output of a cell pair is most sensitive to changes in input variance, and less sensitive to changes in input mean and correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badel L, Gerstner W, Richardson M (2010) Transition-state theory for integrate-and-fire neurons. Computational and Systems Neuroscience, Salt Lake City

  • Bourgeat A, Kern M (2004) Simulation of transport around a nuclear waste disposal site: the couplex test cases Computational Geosciences (special issue). Springer, Berlin

    Google Scholar 

  • Bruneau CH, Marpeau F, Saad M (2005) Numerical simulation of the miscible displacement of radionuclides in a heterogeneous porous medium. Int J Numer Meth Fluids 49: 1053–1085

    Article  MathSciNet  MATH  Google Scholar 

  • Brunel N, Latham PE (2003) Firing rate of the noisy quadratic integrate-and-fire neuron. Neural Comput 15: 2281–2306

    Article  MATH  Google Scholar 

  • Burak Y, Lewallen S, Sompolinsky H (2009) Stimulus-dependent correlations in threshold-crossing spiking neurons. Neural Comput 21(8): 2269–2308

    Article  MathSciNet  MATH  Google Scholar 

  • Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95: 1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Burkitt AN (2006) A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol Cybern 95: 97–112

    Article  MathSciNet  MATH  Google Scholar 

  • Courant R, Friedrichs K, Lewy H (1928) Uber die partiellen Differenzengleichungen der mathematischen Physik. Math Ann 100: 32–74

    Article  MathSciNet  MATH  Google Scholar 

  • de la Rocha J, Doiron B, Shea-Brown E, Josić K, Reyes A (2007) Correlation between neural spike trains increases with firing rate. Nature 448: 802–806

    Article  Google Scholar 

  • Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46: 233–253

    Article  MathSciNet  MATH  Google Scholar 

  • Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9(4): 292–303

    Article  Google Scholar 

  • Galán RF, Ermentrout GB, Urban NN (2007) Stochastic dynamics of uncoupled neural oscillators: Fokker–Planck studies with the finite element method. Phys Rev E 76(5): 56110

    Article  Google Scholar 

  • Gardiner CW (1985) Handbook of stochastic methods. Springer, New York

    Google Scholar 

  • Godlewski E, Raviart PA (1990) Hyperbolic systems of conservation laws. In: Mathématiques et applications. Ellipses

  • Harrison LM, David O, Friston KJ (2005) Stochastic models of neuronal dynamics. Philos Trans R Soc B 360: 1075–1091

    Article  Google Scholar 

  • Hasegawa H (2009) Population rate codes carried by mean, fluctuation and synchrony of neuronal firings. Phys A 388: 499–513

    Article  Google Scholar 

  • Iannelli M (1994) Mathematical theory of age-structured population dynamics. Math Monogr, C.N.R. Pisa

  • Keener J, Sneyd J (2008) Mathematical physiology. Springer, Berlin

    Google Scholar 

  • Khorsand P, Chance F (2008) Transient responses to rapid changes in mean and variance in spiking models. PLoS ONE 3: 1757

    Article  Google Scholar 

  • Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Springer, New York

    MATH  Google Scholar 

  • Knight BW (1972) Dynamics of encoding in a population of neurons. J Gen Physiol 56: 734–766

    Article  Google Scholar 

  • Lindner B (2001) Coherence and stochastic resonance in nonlinear dynamical systems. Humboldt University, California

    Google Scholar 

  • Ly C, Tranchina D (2009) Spike train statistics and dynamics with synaptic input from any renewal process: a population density approach. Neural Comput 21: 360–396

    Article  MathSciNet  MATH  Google Scholar 

  • Marpeau F, Barua A, Josić K (2009) A finite volume method for stochastic integrate-and-fire models. J Comput Neurosci 26: 445–457

    Article  MathSciNet  Google Scholar 

  • Marpeau F, Saad M (2010) 3D simulation of radionuclide transport in porous media. Int J Numer Methods Fluids 64(1): 44–70

    MathSciNet  MATH  Google Scholar 

  • Masuda N (2006) Simultaneous rate-synchrony codes in populations of spiking neurons. Neural Comput 18: 45–59

    Article  MathSciNet  MATH  Google Scholar 

  • Meda I, Atwater I, Bangham A, Orci L, Rojas E (1984) The topography of electrical synchrony among β-cells in the mouse islet of Langerhans. Q J Exp Physiol 69: 719–735

    Google Scholar 

  • Melnikov V (1993) Schmitt trigger: a solvable model of stochastic resonance. Phys Rev E 48: 2481–2489

    Article  Google Scholar 

  • Moreno-Bote R, Parga N (2006) Auto-and crosscorrelograms for the spike response of leaky integrate- and-fire neurons with slow synapses. Phys Rev L 96(2): 28101

    Article  Google Scholar 

  • Moreno-Bote R, Parga N (2010) Response of integrate-and-fire neurons to noisy inputs filtered by synapses with arbitrary timescales: firing rate and correlations. Neural Comp 22: 1528–1572

    Article  MathSciNet  MATH  Google Scholar 

  • Nykamp DQ, Tranchina D (2000) A population density approach that facilitates large-scale modeling of neural networks: analysis and an application to orientation tuning. J Comp Neurosci 8: 19–50

    Article  MATH  Google Scholar 

  • Omurtag A, Knight B, Sirovich L (2000) On the simulation of large populations of neurons. J Comp Neurosci 8(1): 51–63

    Article  MATH  Google Scholar 

  • Ostojić S, Brunel N, Hakim V (2009) How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains. J Neurosci 29(33): 10234–10253

    Article  Google Scholar 

  • Rasetarinera P (1995) Étude mathématique et numérique de la restauration biologique en milieux poreux. University Bordeaux 1, Talence

    Google Scholar 

  • Renart A, Song P, Wang X-J (2003) Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38(473): 473–485

    Article  Google Scholar 

  • Richardson MJE (2007) Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive. Phys Rev E 76(2): 21919

    Article  Google Scholar 

  • Ringach DL, Malone BJ (2007) The operating point of the cortex: neurons as large deviation detectors. J Neurosci 27: 7673–7683

    Article  Google Scholar 

  • Rolls ET, Loh M, Deco G, Winterer Malone G (2008) Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. PLoS Comput Biol 9: 696–708

    Google Scholar 

  • Rosenbaum R, Trousdale J, Josić K (2010) Pooling and correlated neural activity. Front Comput Neurosci 4(9):1–14

    Google Scholar 

  • Rosenbaum R, Josić K (2011) Mechanisms that modulate the transfer of spiking correlations. Neural Comput 23(5): 1261–1305

    Article  MathSciNet  MATH  Google Scholar 

  • Salinas E, Sejnowski T (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J Neurosci 20(16): 6193–6209

    Google Scholar 

  • Schneider A, Lewis T, Rinzel J (2006) Effects of correlated input and electrical coupling on synchrony in fast-spiking cell networks. Neurocomputing 69: 1125–1129

    Article  Google Scholar 

  • Shadlen M, Newsome W (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10): 3870–3896

    Google Scholar 

  • Shea-Brown E, Josić K, de la Rocha J, Doiron B (2008) Correlation and synchrony transfer in integrate-and-fire neurons: basic properties and consequences for coding. Phys Rev Lett 100: 108102

    Article  Google Scholar 

  • Sherman A, Rinzel J (1991) Model for synchronization of pancreatic β-cells by gap junctions. Biophys J 59: 547–559

    Article  Google Scholar 

  • Silberberg G, Bethge M, Markram H, Pawelzik K, Tsodyks M (2004) Dynamics of population rate codes in ensembles of neocortical neurons. J Neurophys 91: 704–709

    Article  Google Scholar 

  • Sirovich L (2008) Populations of tightly coupled neurons: the RGC/LGN system. Neural Comput 20: 1179–1210

    Article  MathSciNet  MATH  Google Scholar 

  • Sompolinsky H, Yoon H, Kang K, Shamir M (2001) Population coding in neuronal systems with correlated noise. Phys Rev E 64(5): 051904

    Article  Google Scholar 

  • Tchumatchenko T, Malyshev A, Geisel T, Volgushev M, Wolf F (2010) Correlations and synchrony in threshold neuron models. Phys Rev Lett 104: 5

    Article  Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretic neurobiology, vol 2. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • van Kampen N (2007) Stochastic processes in physics and chemistry. North-Holland, Amsterdam

    Google Scholar 

  • Vilela R, Lindner B (2009) Comparative study of different integrate-and-fire neurons: spontaneous activity, dynamical response, and stimulus-induced correlation. Phys Rev E 80: 031909

    Article  Google Scholar 

  • Webb G (1985) Theory of nonlinear age-dependent population dynamics. Maecel Dekker, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Rosenbaum.

Additional information

R. Rosenbaum and F. Marpeau contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenbaum, R., Marpeau, F., Ma, J. et al. Finite volume and asymptotic methods for stochastic neuron models with correlated inputs. J. Math. Biol. 65, 1–34 (2012). https://doi.org/10.1007/s00285-011-0451-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0451-3

Keywords

Mathematics Subject Classification (2000)

Navigation