Skip to main content
Log in

Random Leslie matrices in population dynamics

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We generalize the concept of the population growth rate when a Leslie matrix has random elements (correlated or not), i.e., characterizing the disorder in the vital parameters. In general, we present a perturbative formalism to deal with linear non-negative random matrix difference equations, then the non-trivial effective eigenvalue of which defines the long-time asymptotic dynamics of the mean-value population vector state is presented as the effective growth rate. This effective eigenvalue is calculated from the smallest positive root of a secular polynomial. Analytical (exact and perturbative calculations) results are presented for several models of disorder. In particular, a 3 × 3 numerical example is applied to study the effective growth rate characterizing the long-time dynamics of a biological population model. The present analysis is a perturbative method for finding the effective growth rate in cases when the vital parameters may have negative covariances across populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander S, Bernasconi J, Schneider WR, Orbach R (1981) Excitation dynamics in random one-dimensional systems. Rev Mod Phys 53: 175–198

    Article  MathSciNet  Google Scholar 

  • Arnold L, Gundlach VM, Demetrius L (1994) Evolutionary formalism for products of positive random matrices. Ann Appl Probab 4: 859–901

    Article  MathSciNet  MATH  Google Scholar 

  • Berta A, Sumich JL, Kovacs KM, Folkens PA, Adam PJ (2005) Marine mammals: evolutionary biology, 2nd edn. Elsevier, Berlin

    Google Scholar 

  • Boyce MS (1977) Population growth with stochastic fluctuations in the life table. Theor Popul Biol 12: 366–373

    Article  Google Scholar 

  • Brault S, Caswell H (1993) Pod-specific demography of resident killer whales (Orcinus orca) in British Columbia and Washington State. Ecology 74: 1444–1454

    Article  Google Scholar 

  • Brissaud A, Frisch U (1974) Solving linear stochastic differential equations. J Math Phys 15: 524–534

    Article  MathSciNet  MATH  Google Scholar 

  • Budde CE, Cáceres MO (1988) Diffusion in presence of external anomalous noise. Phys Rev Lett 60: 2712–2714

    Article  MathSciNet  Google Scholar 

  • Caswell H (1978) A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor Popul Biol 14: 215–230

    Article  MathSciNet  Google Scholar 

  • Cáceres MO, Matsuda H, Odagaki T, Prato DP, Lamberti W (1997) Theory of diffusion in finite random media with a dynamic boundary condition. Phys Rev B 56: 5897–5908

    Article  Google Scholar 

  • Cáceres MO (2003) (in Spanish) Elementos de estadistica de no equilibrio y sus aplicaciones al transporte en medios desordenados, Reverté S.A., Barcelona

  • Cáceres MO (2004) From Chandrasekhar to the stochastic transport theory. Trends Statist Phys 4: 85–122

    Google Scholar 

  • Cohen JE (1979) Comparative statistic and stochastic dynamics of age-structured populations. Theor Popul Biol 16: 159–171

    Article  MATH  Google Scholar 

  • Cohen JE, Newman CM (1984) The Stability of large random matrices and their producs. Ann Prob 12(2): 283–310

    Article  MathSciNet  MATH  Google Scholar 

  • Dyson FJ (1953) The dynamics of a disordered linear chain. Phys Rev 92(6): 1331–1338

    Article  MathSciNet  MATH  Google Scholar 

  • Furstenberg H, Kesten H (1960) Producs of random matrices. Ann Math Stat 31(2): 457–469

    Article  MathSciNet  MATH  Google Scholar 

  • Girko VL (1981) The central limit theorem for random determinants. Theor Prob Appl 26(3): 197–199

    MathSciNet  Google Scholar 

  • Hardy GH (1949) Divergent series. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Hernandez Garcia E, Pesquera L, Rodriguez M, San Miguel M (1989) Random walk in dynamically disordered chains. J Stat Phys 55: 1027–1052

    Article  MathSciNet  Google Scholar 

  • Hernandez Garcia E, Rodriguez MA, Pesquera L, San Miguel M (1990a) Transport properties for random walks in disordered one dimensional media: perturbative calculations around the effective-medium approximation. Phys Rev B 42: 10653–10672

    Article  Google Scholar 

  • Hernandez Garcia E, Cáceres MO (1990b) First passage time statistics in disordered media. Phys Rev B 42: 4503–4518

    Article  Google Scholar 

  • Horvitz C, Schemske D, Caswell H (1997) The “importance” of life history stages to population growth: prospective and retrospective analyses. In: Tuljapurkar S, Caswell H (eds) Structures population models in marine, terrestrial and freshwater systems. Chapman & Hall, New York, pp 247–272

    Chapter  Google Scholar 

  • Leslie PH (1945) On the use of matrices in certain population mathematics. Biometrikra 33(part III): 183–212

    Article  MathSciNet  MATH  Google Scholar 

  • Mann J, Connor RC, Barre LM, Heithaus MR (2000) Female reproductive success in bottlenose dolphins (Tursiopssp.): life history, habitat, provisioning, and group-size effects. Behav Ecol 11: 210–219

    Article  Google Scholar 

  • May RM (1972) Will a large complex system be stable?. Nature 238: 413–414

    Article  Google Scholar 

  • McLellan BN (1989) Dynamics of a grizzly bear population during a period of industrial resource extraction. III. Natality and rate of increase. Can J Zool 67: 1865–1868

    Article  Google Scholar 

  • Mehta ML (1967) Random matrices and the statistical theory of energy levels. Academics Press, New York

    MATH  Google Scholar 

  • Mills LS, Doak DF, Wisdom MJ (1999) Reliability of conservation actions based on elasticity analysis of matrix models. Conserv Biol 13: 815–829

    Article  Google Scholar 

  • Oseledec VI (1968) A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans Moscow Math Soc 19: 197–231

    MathSciNet  Google Scholar 

  • Pool RR, Cáceres MO (2010) Effective Perron–Frobenius eigenvalue for a correlated random map. Phys Rev E 82: 035203(1)–035203(4) (Rapid Communication)

    Article  Google Scholar 

  • Pury PA, Cáceres MO (2002) Survival and residence times in disordered chains with bias. Phys Rev E 66: 21112(01)–21112(13)

    Article  Google Scholar 

  • Rayen TJ (2005) Marine mammal research: conservation beyond crisis. The Johns Hopkins University Press, New York

    Google Scholar 

  • Skalski JR, Millspaugh JJ, Dillingham P, Buchanan RA (2007) Calculating the variance of the finite rate of population change from a matrix model in mathematica. Environ Model Softw 22: 359–364

    Article  Google Scholar 

  • Szabo A, Shoup D, Northrup S, Mc Cammon J (1982) Stochastically gated diffusion-influenced reactions. J Chem Phys 77: 4484–4493

    Article  Google Scholar 

  • Tuljapurkar SD (1982) Population dynamics in variable environments II, correlated environments sensitivity analysis and dynamics. Theor Popul Biol 21: 114–140

    Article  MathSciNet  MATH  Google Scholar 

  • Terwiel RH (1974) Projection operator method applied to stochastic linear differential equations. Phys A 74: 248–252

    MathSciNet  Google Scholar 

  • van Groenendael J, de Kroon H, Caswell H (1988) Projection matrices in population biology. Trends Ecol Evol (3):264–269

  • van Kampen NG (1992) Stochastic processes in physics and chemistry. North Holland, Amsterdam

    Google Scholar 

  • Wigner EP (1955) Characteristics values of bordered matrices with infinite dimensions. Ann Math 62: 548–564

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel O. Cáceres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cáceres, M.O., Cáceres-Saez, I. Random Leslie matrices in population dynamics. J. Math. Biol. 63, 519–556 (2011). https://doi.org/10.1007/s00285-010-0378-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0378-0

Keywords

Mathematics Subject Classification (2000)

Navigation