Skip to main content
Log in

Senescence and antibiotic resistance in an age-structured population model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Different theories have been proposed to understand the growing problem of antibiotic resistance of microbial populations. Here we investigate a model that is based on the hypothesis that senescence is a possible explanation for the existence of so-called persister cells which are resistant to antibiotic treatment. We study a chemostat model with a microbial population which is age-structured and show that if the growth rates of cells in different age classes are sufficiently close to a scalar multiple of a common growth rate, then the population will globally stabilize at a coexistence steady state. This steady state persists under an antibiotic treatment if the level of antibiotics is below a certain threshold; if the level exceeds this threshold, the washout state becomes a globally attracting equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrich WC, Monnet DL, Harbarth S (2004) Antibiotic selection pressure and resistance in Streptococcus pneumoniae and Streptococcus pyogenes. Emerg Infect Dis 10(3): 514–517

    Google Scholar 

  • Ayati BP, Klapper I (2007) A multiscale model of biofilm as a senescence-structured fluid. SIAM Multi Model Sim 6: 347–365

    Article  MATH  MathSciNet  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2005) Bacterial persistence as a phenotypic switch. Science 305: 1622–1625

    Article  Google Scholar 

  • Bigger J (1944) Treatment of staphylococcal infections with penicillin by intermittent sterilisation. The Lancet 244: 497–500

    Article  Google Scholar 

  • Cogan NG (2006) Effects of persister formation on bacterial response dosing. J Theor Biol 238: 694–703

    Article  MathSciNet  Google Scholar 

  • Cogan NG (2007) Incorporating toxin hypothesis into a mathematical model of persister formation and dynamics. J Theor Biol 248: 340–349

    Article  MathSciNet  Google Scholar 

  • Consortium REX (2007) Structure of the scientific community modelling the evolution of resistance. PLoS ONE 2(12): e1275. doi:10.1371/journal.pone.0001275

    Article  Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264: 375–382

    Article  Google Scholar 

  • D’Agata EMC, Magal P, Olivier D, Ruan S, Webb GF (2007) Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration. J Theor Biol 249: 487–499

    Article  Google Scholar 

  • D’Agata EMC, Dupont-Rouzeyrol M, Magal P, Olivier D, Ruan S (2008) The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria. PLoS ONE 3(12): e4036. doi:10.1371/journal.pone.0004036

    Article  Google Scholar 

  • D’Agata EMC, Webb GF, Horn MA, Moellering RC Jr, Ruan S (2009) Modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureusi into the hospital setting. Clin Infect Dis 48: 274–284

    Article  Google Scholar 

  • De Leenheer P, Cogan NG (2009) Failure of antibiotic treatment in microbial populations. J Math Biol 59(4): 563–579

    Article  MATH  MathSciNet  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J Math Biol 28: 365–382

    Article  MATH  MathSciNet  Google Scholar 

  • Grundmann H, Hellriegel B (2006) Mathematical modeling: a tool for hospital infection control. Lancet Infect Dis 6: 39–45

    Article  Google Scholar 

  • Hardin G (1960) Competitive exclusion principle. Science 131: 1292–1297

    Article  Google Scholar 

  • Hirsch MW, Hanisch H, Gabriel J-P (1985) Differential equation models for some parasitic infections: methods for the study of asymptotic behavior. Comm Pure Appl Math 38: 733–753

    Article  MATH  MathSciNet  Google Scholar 

  • Imran M, Smith HL (2006) The pharmacodynamics of antibiotic treatment. J Comp Math Meth Med 7: 229–263

    Article  MATH  Google Scholar 

  • Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230: 13–18

    Article  Google Scholar 

  • Klapper I, Gilbert P, Ayati BP, Dockery J, Stewart PS (2007) Senescence can explain microbial persistence. Microbiology 153: 3623–3630

    Article  Google Scholar 

  • Korona R, Nakatsu CH, Forney LJ, Lenski RE (1994) Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proc Natl Acad Sci USA 91: 9037–9041

    Article  Google Scholar 

  • Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309: 275–278

    Article  Google Scholar 

  • Kussell E, Kishony R, Balaban NQ, Leibler S (2005) Bacterial persistence: a model of survival in changing environments. Genetics 169: 1807–1814

    Article  Google Scholar 

  • Layden T, Layden J, Ribeiro R, Perelson A (2003) Mathematical modeling of viral kinetics: a tool to understand and optimize therapy. Clin Liver Dis 7: 163–178

    Article  Google Scholar 

  • Lenas P, Pavlou S (1995) Coexistence of three microbial populations in a chemostat with periodically varying dilution rate. Math Biosci 129: 111–142

    Article  MATH  Google Scholar 

  • Levin BR (2001) Minimizing potential resistance: a population dynamics view. Clin Infect Dis 33: S161–S169

    Article  Google Scholar 

  • Levy S, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10: S122–S129

    Article  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemoth 45: 999–1007

    Article  Google Scholar 

  • Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Micro 5: 48–56

    Article  Google Scholar 

  • Lipsitch M, Levin B (1997) The population dynamics of antimicrobial chemotherapy. Antimicrob Agents Chemother 41: 363–373

    Google Scholar 

  • Lindner AB, Madden R, Demarez A, Stewart EJ, Taddei F (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci USA 105: 3076–3081

    Article  Google Scholar 

  • Martinez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321: 365–367

    Article  Google Scholar 

  • McGowan JE (1983) Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Rev Inf Dis 5(6): 1033–1048

    Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304

    Article  Google Scholar 

  • Perelson A, Nelson P (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41: 3–44

    Article  MATH  MathSciNet  Google Scholar 

  • Siegel JD, Rhinehart E, Jackson M, Chiarello L (2007) Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control 35: S165–S193

    Article  Google Scholar 

  • Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46: 155–164

    Article  Google Scholar 

  • Smith HL, Waltman P (1995) The theory of the chemostat. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Smith HL, Waltman P (1999) Perturbation of a globally stable steady state. Proc AMS 127: 447–453

    Article  MATH  MathSciNet  Google Scholar 

  • Stewart EJ, Madden R, Paul G, Taddei F (2005) Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Comp Biol 3: 295–300

    Google Scholar 

  • Thieme HR (1993) Persistence under relaxed point-dissipativity (with application to an endemic model). SIAM J Math Anal 24: 407–435

    Article  MATH  MathSciNet  Google Scholar 

  • Thieme HR (2003) Mathematics in population biology. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Temime L, Hejblum G, Setbon M, Valleron AJ (2008) The rising impact of mathematical modeling in epidemiology: antibiotic resistance research as a case study. Epidemiol Infect 136: 289–298

    Article  Google Scholar 

  • Turner PE, Souza V, Lenski RE (1996) Tests of ecological mechanisms promoting the stable coexistence of two bacterial genotypes. Ecology 77: 2119–2129

    Article  Google Scholar 

  • Vance RR (1985) The stable coexistence of two competitors for one resource. Am Nat 126: 72–86

    Article  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-treshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180: 29–48

    Article  MATH  MathSciNet  Google Scholar 

  • Wiuff C, Anderson D (2007) Antibiotic treatment in vitro of phenotypically tolerant bacterial populations. J Antimicrob Chemother 59: 254–263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick De Leenheer.

Additional information

P. De Leenheer was supported in part by NSF grant DMS-0614651. T. Gedeon was supported in part by NSF grant DMS-0818785. S. S. Pilyugin was supported in part by NSF grant DMS-0818050.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Leenheer, P., Dockery, J., Gedeon, T. et al. Senescence and antibiotic resistance in an age-structured population model. J. Math. Biol. 61, 475–499 (2010). https://doi.org/10.1007/s00285-009-0302-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0302-7

Keywords

Mathematics Subject Classification (2000)

Navigation