Skip to main content

Advertisement

Log in

Nodal distances for rooted phylogenetic trees

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Dissimilarity measures for (possibly weighted) phylogenetic trees based on the comparison of their vectors of path lengths between pairs of taxa, have been present in the systematics literature since the early seventies. For rooted phylogenetic trees, however, these vectors can only separate non-weighted binary trees, and therefore these dissimilarity measures are metrics only on this class of rooted phylogenetic trees. In this paper we overcome this problem, by splitting in a suitable way each path length between two taxa into two lengths. We prove that the resulting splitted path lengths matrices single out arbitrary rooted phylogenetic trees with nested taxa and arcs weighted in the set of positive real numbers. This allows the definition of metrics on this general class of rooted phylogenetic trees by comparing these matrices through metrics in spaces \({\mathcal{M}_n(\mathbb {R})}\) of real-valued n × n matrices. We conclude this paper by establishing some basic facts about the metrics for non-weighted phylogenetic trees defined in this way using L p metrics on \({\mathcal{M}_n(\mathbb {R})}\), with \({p \in \mathbb {R}_{ >0 }}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdi H (1990) Additive-tree representations. In: Trees and hierarchical structures. Lecture notes in biomathematics, vol 84. Springer, Heidelberg, pp 43–59

  • Allen BL, Steel MA (2001) Subtree transfer operations and their induced metrics on evolutionary trees. Ann Comb 5: 1–13

    Article  MathSciNet  Google Scholar 

  • Batagelj V, Pisanski T, Simões-Pereira JMS (1990) An algorithm for tree-realizability of distance matrices. Int J Comput Math 34(3): 171–176

    Article  MATH  Google Scholar 

  • Batra P (2008) Newton’s method and the computational complexity of the fundamental theorem of algebra. Electron Notes Theor Comput Sci 202: 201–218

    Article  MathSciNet  Google Scholar 

  • Billera LJ, Holmes SP, Vogtmann K (2001) Geometry of the space of phylogenetic trees. Adv Appl Math 27(1): 733–767

    Article  MATH  MathSciNet  Google Scholar 

  • Bluis J, Shin D-G (2003) Nodal distance algorithm: calculating a phylogenetic tree comparison metric. In: Proceedings of the third IEEE symposium on bioInformatics and bioEngineering, IEEE Computer Society, USA, pp 87–94

  • Boesch FT (1968) of the distance matrix of a tree. Q Appl Math 16: 607–609

    MathSciNet  Google Scholar 

  • Buneman P (1969) The recovery of trees from measures of dissimilarity. In: Hodson FR, Kendall DG, Tautu P (eds) Mathematics in the archaeological and historical sciences. Edinburgh University Press, pp 387–395

  • Critchlow DE, Pearl DK, Qian C (1996) The triples distance for rooted bifurcating phylogenetic trees. Syst Biol 45(3): 323–334

    Google Scholar 

  • Farris JS (1969) A successive approximations approach to character weighting. Syst Zool 18: 374–385

    Article  Google Scholar 

  • Farris JS (1973) On comparing the shapes of taxonomic trees. Syst Zool 22: 50–54

    Article  Google Scholar 

  • Felsenstein J (1978) The number of evolutionary trees. Syst Zool 27: 27–33

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates Inc., USA

    Google Scholar 

  • Grünewald S, Huber KT, Moulton V, Semple C (2008) Encoding phylogenetic trees in terms of weighted quartets. J Math Biol 56(4): 465–477

    Article  MATH  MathSciNet  Google Scholar 

  • Handl J, Knowles J, Kell DB (2005) Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15): 3201–3212

    Article  Google Scholar 

  • Hoef-Emden K (2005) Molecular phylogenetic analyses and real-life data. Comput Sci Eng 7(3): 86–91

    Article  Google Scholar 

  • Leonardi F, Matioli SR, Armelin HA, Galves A (2008) Detecting phylogenetic relations out from sparse context trees, http://arxiv.org/abs/0804.4279

  • Morell V (1996) TreeBASE: the roots of phylogeny. Science 273(5275):569–570. http://www.treebase.org

    Google Scholar 

  • Oden NL, Shao K (1984) An algorithm to equiprobably generate all directed trees with k labeled terminal nodes and unlabeled interior nodes. Bull Math Biol 46: 379–387

    MATH  MathSciNet  Google Scholar 

  • Page RDM (2005) Phyloinformatics: toward a phylogenetic database. In: Wang JT-L, Zaki MJ, Toivonen H, Shasha D (eds) Data mining in bioinformatics. Springer, Heidelberg, pp 219–241

    Chapter  Google Scholar 

  • Penny D, Hendy MD (1985) The use of tree comparison metrics. Syst Zool 34(1): 75–82

    Article  Google Scholar 

  • Phipps JB (1971) Dendrogram topology. Syst Zool 20: 306–308

    Article  Google Scholar 

  • Puigbò P, Garcia-Vallvé S, McInerney J (2007) TOPD/FMTS: a new software to compare phylogenetic trees. Bioinformatics 23(12): 1556–1558

    Article  Google Scholar 

  • Robinson DF, Foulds LR (1979) Comparison of weighted labelled trees. In: Proceedings of the 6th Australian conference on combinatorial mathematics. Lecture notes in mathematics, vol 748. Springer, Heidelberg, pp 119–126

  • Robinson DF, Foulds LR (1981) Comparison of phylogenetic trees. Math Biosci 53(1/2): 131–147

    Article  MATH  MathSciNet  Google Scholar 

  • Semple C, Steel M (2003) Phylogenetics. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Simões-Pereira JMS (1969) A note on the tree realizability of a distance. J Comb Theor B 6(3): 303–310

    Article  MATH  Google Scholar 

  • Sloane NJA The on-line encyclopedia of integer sequences. http://www.research.att.com/njas/sequences/

  • Smolenskii YA (1963) A method for the linear recording of graphs. USSR Comput Math Math Phys 2: 396–397

    Article  MathSciNet  Google Scholar 

  • Steel MA, Penny D (1993) Distributions of tree comparison metrics—some new results. Syst Biol 42(2): 126–141

    MathSciNet  Google Scholar 

  • Waterman MS, Smith TF (1978) On the similarity of dendograms. J Theor Biol 73: 789–800

    Article  MathSciNet  Google Scholar 

  • Williams WT, Clifford HT (1971) On the comparison of two classifications of the same set of elements. Taxon 20(4): 519–522

    Article  Google Scholar 

  • Zaretskii KA (1965) Construction of a tree from the collection of distances between suspending vertices (in Russian). Uspekhi Matematicheskikh Nauka 6: 90–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Rosselló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardona, G., Llabrés, M., Rosselló, F. et al. Nodal distances for rooted phylogenetic trees. J. Math. Biol. 61, 253–276 (2010). https://doi.org/10.1007/s00285-009-0295-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0295-2

Keywords

Mathematics Subject Classification (2000)

Navigation