Skip to main content

Advertisement

Log in

Traction patterns of tumor cells

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The traction exerted by a cell on a planar deformable substrate can be indirectly obtained on the basis of the displacement field of the underlying layer. The usual methodology used to address this inverse problem is based on the exploitation of the Green tensor of the linear elasticity problem in a half space (Boussinesq problem), coupled with a minimization algorithm under force penalization. A possible alternative strategy is to exploit an adjoint equation, obtained on the basis of a suitable minimization requirement. The resulting system of coupled elliptic partial differential equations is applied here to determine the force field per unit surface generated by T24 tumor cells on a polyacrylamide substrate. The shear stress obtained by numerical integration provides quantitative insight of the traction field and is a promising tool to investigate the spatial pattern of force per unit surface generated in cell motion, particularly in the case of such cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, B. et al.: Molecular Biology of the Cell, 3rd edn. Garland, New York (1994)

    Google Scholar 

  2. Ambrosi, D.: Cellular traction as an inverse problem. SIAM J. Appl. Math 66, 2049–2060 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balaban, N.Q., Schwarz, U.S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., Geiger, B.: Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3, 466–472 (2001)

    Article  Google Scholar 

  4. Boudou, T., Ohayon, J., Picart, C., Tracqui, P.: An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels. Biorheology 43, 721–728 (2006)

    Google Scholar 

  5. Burton, K., Taylor, D.L.: Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997)

    Article  Google Scholar 

  6. Burton, K., Park, J.H., Taylor, D.L.: Keratocytes generate traction forces in two phases. Mol. Biol. Cell 10, 3745–3769 (1999)

    Google Scholar 

  7. Butler, J.P., Toli-Nørrelykke, I.M., Fabry, B., Fredberg, J.J.: Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282, C595–C605 (2002)

    Google Scholar 

  8. Choquet, D., Felsenfeld, D.P., Sheetz, M.P.: Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88, 39–48 (1997)

    Article  Google Scholar 

  9. Dembo, M., Wang, Y.L.: Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999)

    Article  Google Scholar 

  10. Dembo, M., Oliver, T., Ishihara, A., Jacobson, K.: Imaging the traction stresses exerted by locomoting cells with elastic substratum method. Biophys. J. 70, 2008–2022 (1996)

    Article  Google Scholar 

  11. Discher, D.E., Janmey, P., Wang, Y.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005)

    Article  Google Scholar 

  12. du Roure, O., Saez, A., Buguin, A., Austin, R.H., Chavrier, P., Silberzan, P., Ladoux, B.: Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390–2395 (2005)

    Article  Google Scholar 

  13. Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., Discher, D.: Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628 (2004)

    Article  Google Scholar 

  14. Féréol, S., Fodil, R., Labat, B., Galiacy, S., Laurent, V.M., Louis, B., Isabey, D., Planus, E.: Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. Cell Motil. Cytoskelet. 63, 321–340 (2006)

    Article  Google Scholar 

  15. Fichera, G.: Existence theorems in elasticity. In: Truesdell, C. (eds) Handbuch der Physik, Band VIa/2, Springer, Heidelberg (1972)

    Google Scholar 

  16. Galbraith, C.G., Sheetz, M.P.: A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94, 9114–9118 (1997)

    Article  Google Scholar 

  17. Harris, A.K., Wild, P., Stopak, D.: Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177–179 (1980)

    Article  Google Scholar 

  18. Rasband, W.S.: ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA (1997–007). http://rsb.info.nih.gov/ij/

  19. Landau, L., Lisfchitz, E.: Théorie de l’Élasticité. Mir, Moscou (1967)

  20. Lee, J., Leonard, M., Oliver, T., Ishihara, A., Jacobson, K.: Traction forces generated by locomoting keratocytes. J. Cell Biol 127, 1957–1964 (1994)

    Article  Google Scholar 

  21. Lions, J.L.: Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod et Gauthier-Villard, Paris (1968)

    MATH  Google Scholar 

  22. Lo, C.M., Wang, H.B., Dembo, M., Wang, Y.L.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000)

    Article  Google Scholar 

  23. Merkel, R., Kirchgessner, N., Cesa, C.M., Hoffman, B.: Cell force microscopy on elastic layers of finite thickness. Biophys. J 93, 3314–3323 (2007)

    Article  Google Scholar 

  24. Palecek, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., Horwitz, A.F.: Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–540 (1997)

    Article  Google Scholar 

  25. Pelham, R.J., Wang, Y.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997)

    Article  Google Scholar 

  26. Reinhart-King, C.A., Dembo, M., Hammer, D.A.: The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89, 676–689 (2005)

    Article  Google Scholar 

  27. Ridley, A.J., Schwartz, M.A., Burridge, K, Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., Horwitz, A.R.: Cell Migration: integrating signals from front to back. Science 302, 1704–1709 (2003)

    Article  Google Scholar 

  28. Rincon, A., Liu, I.S.: On numerical approximation of an optimal control problem in linear elasticity. Divulgaciones Matemáticas 11, 91–107 (2003)

    MATH  MathSciNet  Google Scholar 

  29. Saez, A., Buguin, A., Silberzan, P., Ladoux, B.: Is the mechanical activity of epithelial cells controlled by deformations or forces?. Biophys. J. 89, L52–L54 (2005)

    Article  Google Scholar 

  30. Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P., Ladoux, B.: Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA 104, 8281–8286 (2007)

    Article  Google Scholar 

  31. Sabass, B., Gardel, M.L., Waterman, C.M., Schwarz, U.S.: High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94, 207–220 (2008)

    Article  Google Scholar 

  32. Schwarz, U.S., Balaban, N.Q., Riveline, D., Bershadsky, A., Geiger, B., Safran, S.A.: Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys. J. 83, 1380–1394 (2002)

    Article  Google Scholar 

  33. Tan, J.L., Tien, J., Pirone, D.M., Gray, D.S., Bhadriraju, K., Chen, C.S.: Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003)

    Article  Google Scholar 

  34. Verdier, C.: Review. Rheological properties of living materials: from cells to tissues. J. Theor. Med. 5, 67–91 (2003)

    Article  MATH  Google Scholar 

  35. Yeung, T., Georges, P.C., Flanagan, L.A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., Janmey, P.A.: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet. 60, 24–34 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ambrosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosi, D., Duperray, A., Peschetola, V. et al. Traction patterns of tumor cells. J. Math. Biol. 58, 163–181 (2009). https://doi.org/10.1007/s00285-008-0167-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0167-1

Mathematics Subject Classification (2000)

Navigation