Skip to main content
Log in

Systems biology towards life in silico: mathematics of the control of living cells

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Systems Biology is the science that aims to understand how biological function absent from macromolecules in isolation, arises when they are components of their system. Dedicated to the memory of Reinhart Heinrich, this paper discusses the origin and evolution of the new part of systems biology that relates to metabolic and signal-transduction pathways and extends mathematical biology so as to address postgenomic experimental reality. Various approaches to modeling the dynamics generated by metabolic and signal-transduction pathways are compared. The silicon cell approach aims to describe the intracellular network of interest precisely, by numerically integrating the precise rate equations that characterize the ways macromolecules’ interact with each other. The non-equilibrium thermodynamic or ‘lin–log’ approach approximates the enzyme rate equations in terms of linear functions of the logarithms of the concentrations. Biochemical Systems Analysis approximates in terms of power laws. Importantly all these approaches link system behavior to molecular interaction properties. The latter two do this less precisely but enable analytical solutions. By limiting the questions asked, to optimal flux patterns, or to control of fluxes and concentrations around the (patho)physiological state, Flux Balance Analysis and Metabolic/Hierarchical Control Analysis again enable analytical solutions. Both the silicon cell approach and Metabolic/Hierarchical Control Analysis are able to highlight where and how system function derives from molecular interactions. The latter approach has also discovered a set of fundamental principles underlying the control of biological systems. The new law that relates concentration control to control by time is illustrated for an important signal transduction pathway, i.e. nuclear hormone receptor signaling such as relevant to bone formation. It is envisaged that there is much more Mathematical Biology to be discovered in the area between molecules and Life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberghina, L., Westerhoff, H.V. (eds): Systems Biology: Definitions and Perspectives, 408 pages. Springer, Berlin, ISBN 354022968X (2005)

    Google Scholar 

  2. Albermann, L., Shahin, V., Ludwig, Y., Schafer, C., Schillers, H., Oberleithner, H.: Evidence for importin-alpha independent nuclear translocation of glucocorticoid receptors in Xenopus laevis oocytes. Cell. Physiol. Biochem. 14, 343–350 (2004)

    Article  Google Scholar 

  3. Boogerd, F.C., Bruggeman, F., Hofmeyr, J.H.S., Westerhoff, H.V. (eds): Systems Biology Philosophical Foundations, 1st edn, 342 pages. Elsevier, Amsterdam, ISBN: 0444520856 (2007)

    Google Scholar 

  4. Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology. Trends Microbiol. 15, 45–50 (2007)

    Article  Google Scholar 

  5. Carlberg, C., Dunlop, T.W.: An integrated biological approach to nuclear receptor signaling in physiological control and disease. Crit. Rev. Eukaryot. Gene Expr. 16, 1–22 (2006)

    Google Scholar 

  6. Chance, B., Williams, G.R., Holmes, W.F., Higgins, J.: Respiratory enzymes in oxidative phosphorylation. 5. A mechanism for oxidative phosphorylation. J. Biol. Chem. 217, 439–451 (1955)

    Google Scholar 

  7. Chen, K.C., Calzone, L., Csikasz-Nagy, A., Cross, F.R., Novak, B., Tyson, J.J.: Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862 (2004)

    Article  Google Scholar 

  8. Conradie, R., Westerhoff, H.V., Rohwer, J.M., Hofmeyr, J.-H.S., Snoep, J.L.: Summation theorems for flux and concentration control coefficients of dynamic systems. IEE Proc. Syst. Biol. 153, 314–317 (2006)

    Article  Google Scholar 

  9. Cornish-Bowden, A.: Fundamentals of Enzyme Kinetics, 3rd edn., 344 pages. Portland Press, London, ISBN 1 85578 1581 (2004)

  10. Dasika, M., Gupta, A., Maranas, C.D., Varner, J.D.: A mixed integer linear programming (MILP) framework for inferring time delay in gene regulatory networks. Pac. Symp. Biocomput. 9, 474–485 (2004)

    Google Scholar 

  11. Demin, O.V., Westerhoff, H.V., Kholodenko, B.N.: Control analysis of stationary forced oscillations. J. Phys. Chem. B 103, 10695–10710 (1999)

    Article  Google Scholar 

  12. Eijken, M., Koedam, M. et al.: The essential role of glucocorticoids for proper human osteoblast differentiation and matrix mineralization. Mol. Cell. Endocrinol. 248(1–2), 87–93 (2006)

    Article  Google Scholar 

  13. Fell, D.A.: Increasing the flux in metabolic pathways: a metabolic control analysis perspective. Biotechnol. Bioeng. 58, 121–124 (1998)

    Article  Google Scholar 

  14. Garfinkel, D., Hess, B.: Metabolic Control Mechanisms. Vii. A detailed computer model of the glycolytic pathway in ascites cells. J. Biol. Chem. 239, 971–983 (1964)

    Google Scholar 

  15. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behavior, 629 pages. Cambridge University Press, Cambridge, ISBN 0521403073 (1996)

    Google Scholar 

  16. Heinrich, R., Rapoport, T.A.: Mathematical analysis of multienzyme systems. II. Steady-state and transient control. BioSystems 7, 130–136 (1975)

    Article  Google Scholar 

  17. Heinrich, R., Reder, C.: Control analysis of relaxation processes. J. Theor. Biol. 151, 343–350 (1991)

    Article  Google Scholar 

  18. Heinrich, R., Neel, B.G., Rapoport, T.A.: Mathematical models of protein kinase signal transduction. Mol. Cell 9, 957–970 (2002)

    Article  Google Scholar 

  19. Heinrich, R., Rapoport, T.A.: Linear steady-state treatment of enzymatic chains—general properties, control and effector strength. Eur. J. Biochem. 42, 89–95 (1974)

    Article  Google Scholar 

  20. Heinrich, R., Rapoport, S.M., Rapoport, T.A.: Metabolic regulation and mathematical models. Prog. Biophys. Mol. Biol. 32, 1–82 (1977)

    Article  MathSciNet  Google Scholar 

  21. Hoefnagel, M.H.N., Starrenburg, M.J.C., Martens, D.E., Hugenholtz, J., Kleerebezem, M., Van Swam, I.I., Bongers, R., Westerhoff, H.V., Snoep, J.L.: Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modeling, metabolic control and experimental analysis. Microbiology-Sgm 148, 1003–1013 (2002)

    Google Scholar 

  22. Holzhütter, H.G.: The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 271, 2905–2922 (2004)

    Article  Google Scholar 

  23. Hornberg, J.J., Bruggeman, F.J., Binder, B., Geest, C.R., de Vaate, A., Lankelma, J., Heinrich, R., Westerhoff, H.V.: Principles behind the multifarious control of signal transduction—ERK phosphorylation and kinase/phosphatase control. FEBS J. 272, 244–258 (2005)

    Article  Google Scholar 

  24. Kacser, H., Burns, J.A.: The control of flux. Symp. Soc. Exp. Biol 27, 65–104 (1973)

    Google Scholar 

  25. Kahn, D., Westerhoff, H.V.: Control-theory of regulatory cascades. J. Theor. Biol. 153, 255–285 (1991)

    Article  Google Scholar 

  26. Katchalsky, A., Curran, P.F.: Nonequilibrium Thermodynamics in Biophysics, 248 pages. Harvard University Press, Cambridge, ISBN:0674625501 (1965)

    Google Scholar 

  27. Kholodenko, B.N., Cascante, M., Westerhoff, H.V.: Control-theory of metabolic channeling. Mol. Cell. Biochem. 143, 151–168 (1995)

    Article  Google Scholar 

  28. Lawrence, P.A.: The Making of a Fly: The Genetics of Animal Design, 240 pages. Blackwell, Oxford, ISBN: 978-0632030484 (1992)

    Google Scholar 

  29. Meinhardt, H.: Models of Biological Pattern Formation, 230 pages. Academic Press, New York, ISBN:978-0124886209 (1982)

    Google Scholar 

  30. Olivier, B.G., Snoep, J.L.: Web-based kinetic modelling using JWS Online. Bioinformatics 20, 2143–2144 (2004)

    Article  Google Scholar 

  31. Pemberton, L.F., Paschal, B.M.: Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187–198 (2005)

    Article  Google Scholar 

  32. Pike, J.W., Glorieux, F.H., Feldman, D.: Vitamin D, 2nd edn., 1952 pages. Academic Press, New York, ISBN13: 9780122526879 (2005)

  33. Price, N.D., Papin, J.A., Schilling, C.H., Palsson, B.O.: Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol. 21, 162–168 (2003)

    Article  Google Scholar 

  34. Rapoport, I., Berger, H., Elsner, R., Rapoport, S.M.: Eur. J. Biochem. 73, 421–427 (1977)

    Article  Google Scholar 

  35. Rapoport, T.A., Rapoport, S.M., Reich, J.G., Hohne, W.E., Heitmann, P.: Kinetic model for action of inorganic pyrophosphatase from bakers-yeast—activating influence of magnesium ions. Eur. J. Biochem. 26, 237–246 (1972)

    Article  Google Scholar 

  36. Reijenga, K.A., Westerhoff, H.V., Kholodenko, B.N., Snoep, J.L.: Control analysis for autonomously oscillating biochemical networks. Biophys. J. 82, 99–108 (2002)

    Article  Google Scholar 

  37. Savageau, M.A.: Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology, 199 pages. Addison-Wesley, New York, ISBN:978-0201067385 (1976)

    Google Scholar 

  38. Snoep, J.L., Bruggeman, F., Olivier, B.G., Westerhoff, H.V.: Towards building the silicon cell: a modular approach. Biosystems 83, 207–216 (2006)

    Article  Google Scholar 

  39. Snoep, J.L., van der Weijden, C.C., Andersen, H.W., Westerhoff, H.V., Jensen, P.R.: DNA supercoiling in Escherichia coli is under tight and subtle homeostatic control, involving gene-expression and metabolic regulation of both topoisomerase I and DNA gyrase. Eur. J. Biochem. 269, 1662–1669 (2002)

    Article  Google Scholar 

  40. Van der Meer, R., Westerhoff, H.V., Van Dam, K.: Linear relation between rate and thermodynamic force in enzyme-catalyzed reactions. Biochim. Biophys. Acta 591, 488–493 (1980)

    Article  Google Scholar 

  41. Westerhoff, H.V.: Signalling control strength. J. Theor. Biol., in press (2007). doi:10.1016/j.jtbi.2007.11.035

  42. Westerhoff, H.V., Kell, D.B.: Matrix method for determining steps most rate-limiting to metabolic fluxes in biotechnological processes. Biotechnol. Bioeng. 30, 101–107 (1987)

    Article  Google Scholar 

  43. Westerhoff, H.V., Kell, D.B.: What biotechnologists knew all along...?. J. Theor. Biol. 182, 411–420 (1996)

    Article  Google Scholar 

  44. Westerhoff, H.V., Palsson, B.O.: The evolution of molecular biology into systems biology. Nature Biotechnol. 22, 1249–1252 (2004)

    Article  Google Scholar 

  45. Westerhoff, H.V., Van Dam, K.: Thermodynamics and Control of Biological Free-Energy Transduction, 568 pages. Elsevier, Amsterdam, ISBN: 0-444-80783 (1987)

    Google Scholar 

  46. Westerhoff, H.V., Hofmeyr, J.H.S., Kholodenko, B.N.: Getting to the inside of cells using metabolic control analysis. Biophys. Chem. 50, 273–283 (1994)

    Article  Google Scholar 

  47. Wilkinson, S.J., Benson, N., Kell, D.B.: Proximate parameter tuning for biochemical networks with uncertain kinetic parameters. Mol. BioSystems, DOI:10.1039/B707506E (2007)

  48. Wu, L., Wang, W.M., van Winden, W.A., van Gulik, W.M., Heijnen, J.J.: A new framework for the estimation of control parameters in metabolic pathways using lin–log kinetics. Eur. J. Biochem. 271, 3348–3359 (2004)

    Article  Google Scholar 

  49. Yang, J., DeFranco, D.B.: Assessment of glucocorticoid receptor heat shock protein 90 interactions in vivo during nucleocytoplasmic trafficking. Mol. Endocrinol. 10, 3–13 (1996)

    Article  Google Scholar 

  50. Zhou, J.G., Cidlowski, J.A.: The human glucocorticoid receptor: One gene, multiple proteins and diverse responses. Steroids 70, 407–417 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans V. Westerhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westerhoff, H.V., Kolodkin, A., Conradie, R. et al. Systems biology towards life in silico: mathematics of the control of living cells. J. Math. Biol. 58, 7–34 (2009). https://doi.org/10.1007/s00285-008-0160-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0160-8

Keywords

Mathematics Subject Classification (2000)

Navigation