Skip to main content
Log in

Analytic steady-state space use patterns and rapid computations in mechanistic home range analysis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mechanistic home range models are important tools in modeling animal dynamics in spatially complex environments. We introduce a class of stochastic models for animal movement in a habitat of varying preference. Such models interpolate between spatially implicit resource selection analysis (RSA) and advection-diffusion models, possessing these two models as limiting cases. We find a closed-form solution for the steady-state (equilibrium) probability distribution u* using a factorization of the redistribution operator into symmetric and diagonal parts. How space use is controlled by the habitat preference function w depends on the characteristic width of the animals’ redistribution kernel: when the redistribution kernel is wide relative to variation in w, u* ∝ w, whereas when it is narrow relative to variation in w, u* ∝ w 2. In addition, we analyze the behavior at discontinuities in w which occur at habitat type boundaries, and simulate the dynamics of space use given two-dimensional prey-availability data, exploring the effect of the redistribution kernel width. Our factorization allows such numerical simulations to be done extremely fast; we expect this to aid the computationally intensive task of model parameter fitting and inverse modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthur, S.M., Manly, B.F.J., McDonald, L.L., Garner, G.W.: Assessing habitat selection when availability changes. Ecology 77, 215–227 (1996)

    Article  Google Scholar 

  2. Boyce, M.S., Mao, J.S., Merrill, E.M., Fortin, D.: Scale and heterogeneity in habitat selection by elk in Yellowstone National Park. Écoscience 10, 421–431 (2002)

    Google Scholar 

  3. Boyce, M.S., McDonald, L.L.: Relating populations to habitats using resource selection functions. Trends Ecol. Evolut. 14, 268–272 (1999)

    Article  Google Scholar 

  4. Compton, B.W., Rhymer, J.M., McCollough, M.: Habitat selection by wood turtles (clemmys insculpta): and application of paired logistic regression. Ecology 83, 833–843 (2002)

    Google Scholar 

  5. Forester, J.D., Ives, A.R., Turner, M.G., Anderson, D.P., Fortin, D., Beyer, H.L., Smith, D.W., Boyce, M.S.: State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park. Ecol. Monogr. 77, 285– (2007)

    Article  Google Scholar 

  6. Fortin, D., Beyer, H.L., Boyce, M.S., Smith, D.W., Duchesne, T., Mao, J.: Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86, 1320–1330 (2005)

    Article  Google Scholar 

  7. Gardiner, C.W.: Handbook of stochastic methods for physics, chemistry, and the natural sciences, 3rd edn. Springer Series in Synergetics, vol. 13. Springer, Berlin (2004)

  8. Giuggioli, L., Abramson, G., Kenkre, V.M., Parmenter, R.R., Yates, T.L.: Theory of home range estimation from displacement measurements of animal populations. J. Theor. Biol. 240, 126–135 (2006)

    Article  MathSciNet  Google Scholar 

  9. Johnson, C.J., Parker, K.L., Heard, D.C., Gillingham, M.P.: A multiscale behavioral approach to understanding the movements of woodland caribou. Ecol. Appl. 12, 1840–1860 (2002)

    Article  Google Scholar 

  10. Johnson, D.H.: The comparison of usage and availability measurementts for evaluating resource preference. Ecology 61, 65–71 (1980)

    Article  Google Scholar 

  11. Kareiva, P.: Experimental and mathematical analyses of herbivore movement: Quantifying the influence of plant spacing and quality on foraging discrimination. Ecol. Monogr. 52, 261–282 (1982)

    Article  Google Scholar 

  12. Lewis, M.A., White, K.A.J., Murray, J.D.: Analysis of a model for wolf territories. J. Math. Biol. 35, 749–774 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Manly, B.F.J., McDonald, L.L., Thomas, D.L., L., M.T., Erickson, W.P.: Resouce selection by animals: statistical design and analysis for field studies, 2nd edn. Kluwer, Dordrecht

  14. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, London (1993)

    MATH  Google Scholar 

  15. Moorcroft, P.R.: Territoriality and carnivore home ranges. Ph.D. thesis, Dept. of Ecology and Evolutionary Biology, Princeton University (1997)

  16. Moorcroft, P.R., Barnett, A.H.: Mechanistic home range models and resource selection analysis: a reconciliation and unification. Ecology (2007) (in press) arXiv:q-bio/0612008

  17. Moorcroft, P.R., Lewis, M.A.: Mechanistic home range analysis. Monographs in population biology. Princeton University Press, Princeton (2006)

    Google Scholar 

  18. Moorcroft, P.R., Lewis, M.A., Crabtree, R.L.: Mechanistic home range models predict spatial patterns and dynamics of coyote territories in yellowstone. Proc. R. Soc. Ser. B 273, 1651–1659 (2006)

    Article  Google Scholar 

  19. Okubo, A.: Diffusion and ecological problems. Springer, Heidelberg (1980)

    MATH  Google Scholar 

  20. Othmer, H., Dunbar, S.R., Alt, W.: Models of dispersion in biological systems. J. Math. Biol. 26, 263–298 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Patlak, C.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    Article  MathSciNet  Google Scholar 

  22. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  23. Turchin, P.: Translating foraging movements in heterogeneous environments into the spatial distribution of foragers. Ecology 72, 1253–1266 (1991)

    Article  Google Scholar 

  24. White, K.A.J., Lewis, M.A., Murray, J.D.: A model for wolf-pack territory formation and maintenance. J. Theor. Biol. 178, 26–43 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex H. Barnett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, A.H., Moorcroft, P.R. Analytic steady-state space use patterns and rapid computations in mechanistic home range analysis. J. Math. Biol. 57, 139–159 (2008). https://doi.org/10.1007/s00285-007-0149-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0149-8

Keywords

Mathematics Subject Classification (2000)

Navigation