Skip to main content
Log in

Variations on RNA folding and alignment: lessons from Benasque

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Dynamic programming algorithms solve many standard problems of RNA bioinformatics in polynomial time. In this contribution we discuss a series of variations on these standard methods that implement refined biophysical models, such as a restriction of RNA folding to canonical structures, and an extension of structural alignments to an explicit scoring of stacking propensities. Furthermore, we demonstrate that a local structural alignment can be employed for ncRNA gene finding. In this context we discuss scanning variants for folding and alignment algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Backofen R. and Will S. (2004). Local sequence–structure motifs in RNA. J. Bioinform. Comput. Biol. 2: 681–698

    Article  Google Scholar 

  2. Bernhart S., Hofacker I.L. and Stadler P.F. (2006). Local RNA base pairing probabilities in large sequences. Bioinformatics 22: 614–615

    Article  Google Scholar 

  3. Deng W., Zhu X., Skogerbø G., Zhao Y., Fu Z., Wang Y., He Housheng Cai L., Sun H., Liu C., Li B.L., Bai B., Wang J., Cui Y., Jai D., Wang Y., Du D. and Chen R. (2006). Organisation of the Caenorhabditis elegans small noncoding transiptome: genomic features, biogenesis and expression. Genome Res. 16: 30–36

    Google Scholar 

  4. Ding, Y., Chan, C.Y., Lawrence, C.E.: Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32(Web Server issue), W135–W141 (2004)

    Google Scholar 

  5. Doench J.G. and Sharp P.A. (2004). of mioRNA target selection in translational repression. Genes Dev. 18: 504–511

    Article  Google Scholar 

  6. Dulucq S. and Tichit L. (2003). Secondary structure comparison: exact analysis of the Zhang-Shasha tree-edit algorithm. Theor. Comput. Sci. 306: 471–484

    Article  MATH  MathSciNet  Google Scholar 

  7. Hofacker I.L. (2003). Vienna RNA secondary structure server. Nucleic Acids Res. 31: 3429–3431

    Article  Google Scholar 

  8. Hofacker I.L., Bernhart S.H.F. and Stadler P.F. (2004). Alignment of RNA base pairing probability matrices. Bioinformatics 20: 2222–2227

    Article  Google Scholar 

  9. Hofacker I.L., Fontana W., Stadler P.F., Bonhoeffer S., Tacker M. and Schuster P. (1994). Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125(2): 167–188

    Article  Google Scholar 

  10. Hofacker I.L., Priwitzer B. and Stadler P.F. (2004). Prediction of locally stable RNA secondary structures for genome-wide surveys. Bioinformatics 20: 191–198

    Article  Google Scholar 

  11. Jiang T., Lin G., Ma B. and Zhang K. (2002). A general edit distance between RNA structures. J. Comput. Biol. 9: 371–88

    Article  Google Scholar 

  12. Klein R.J. and Eddy S.R. (2003). RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinform 4(1): 44

    Article  Google Scholar 

  13. Leydold, J., Stadler, P.F.: Minimal cycle basis of outerplanar graphs. Elec. J. Comb. 5, 209–222 [R16: 14 p.] (1998)

    Google Scholar 

  14. Lin, G.H., Ma, B., Zhang, K.: Edit distance between two RNA structures. In: Proceedings of the 5th Annual International Conference on Computational Biology RECOMB01, pp. 211–220. ACM Press (2001)

  15. Lyngsø R.B., Zuker M. and Pedersen C.N. (1999). Fast evaluation of internal loops in RNA secondary structure prediction. Bioinformatics 15: 440–445

    Article  Google Scholar 

  16. Mathews D., Sabina J., Zuker M. and Turner H. (1999). Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structure. J. Mol. Biol. 288: 911–940

    Article  Google Scholar 

  17. Mathews D.H., Disney M.D., Childs J.L., Schroeder S.J., Zuker M. and Turner D.H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 101: 7287–7292

    Article  Google Scholar 

  18. McCaskill J.S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29: 1105–1119

    Article  Google Scholar 

  19. Mückstein U., Tafer H., Hackermüller J., Bernhart S., Stadler P.F. and Hofacker I.L. (2006). Thermodynamics of RNA-RNA binding. Bioinformatics 22: 1177–1182

    Article  Google Scholar 

  20. Sankoff D. (1985). Simultaneous solution of the RNA folding, alignment and proto-sequence problems. SIAM J. Appl. Math. 45: 810–825

    Article  MATH  MathSciNet  Google Scholar 

  21. Shao, Y., Wu, Y., Chan, C.Y., Mcdonough, K., Ding, Y.: Rational design and rapid seening of antisense oligonucleotides for prokaryotic gene modulation. Nucleic Acids Res. 34, 5660–5669 (2006)

    Google Scholar 

  22. Stricklin, S.L., Griffiths-Jones, S., Eddy, S.R.: C. elegans noncoding RNA genes. WormBook doi:10.1895/wormbook.1.7.1. http://www.wormbook.org/chapters/www_noncodingRNA/noncoding RNA.html (2005)

  23. Tinoco I., Uhlenbeck O.C. and Levine M.D. (1971). Estimation of secondary structure in ribonucleic acids. Nature 230: 362–367

    Article  Google Scholar 

  24. Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comp. Biol. 3, e65 (2007)

  25. Zemann A., op de Bekke A., Kiefmann M., Brosius J. and Schmitz J. (2006). Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Res. 34: 2676–2685

    Article  Google Scholar 

  26. Zuker M. and Sankoff D. (1984). RNA secondary structures and their prediction. Bull. Math. Biol. 46: 591–621

    MATH  Google Scholar 

  27. Zuker M. and Stiegler P. (1981). Optimal computer folding of larger RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9: 133–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Stadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bompfünewerer, A.F., Backofen, R., Bernhart, S.H. et al. Variations on RNA folding and alignment: lessons from Benasque. J. Math. Biol. 56, 129–144 (2008). https://doi.org/10.1007/s00285-007-0107-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0107-5

Keywords

Mathematics Subject Classification (2000)

Navigation