Skip to main content

Advertisement

Log in

Criterion for stable reentry in a ring of cardiac tissue

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We model electrical wave propagation in a ring of cardiac tissue using an mth-order difference equation, where m denotes the number of cells in the ring. Under physiologically reasonable assumptions, the difference equation has a unique equilibrium solution. Applying Jury’s stability test, we prove a theorem concerning the local asymptotic stability of this equilibrium solution. Our results yield conditions for sustained reentrant tachycardia, a type of cardiac arrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åström K.J. and Wittenmark B. (1984). Computer Controlled Systems: Theory and Design. Prentice-Hall, New Jersey

    Google Scholar 

  2. Cain J.W. and Schaeffer D.G. (2006). Two-term asymptotic approximation of a cardiac restitution curve. SIAM Rev. 48: 37–546

    Article  Google Scholar 

  3. Cain J.W., Tolkacheva E.G., Schaeffer D.G. and Gauthier D.J. (2004). Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber. Phys. Rev. E 70: 061906

    Article  Google Scholar 

  4. Cherry E.M. and Fenton F.H. (2004). Suppression of alternans and conduction blocks despite steep APD restitution: Electrotonic, memory and conduction velocity restitution effects. Am. J. Physiol. 286: H2332–H2341

    Google Scholar 

  5. Chialvo D.R., Michaels D.C. and Jalife J. (1990). Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers. Circ. Res. 66: 525–545

    Google Scholar 

  6. Courtemanche M., Keener J.P. and Glass L. (1996). A delay equation representation of pulse circulation on a ring in excitable media. SIAM J. Appl. Math. 56: 119–142

    Article  MATH  Google Scholar 

  7. Cytrynbaum E. and Keener J.P. (2002). Stability conditions for the traveling pulse: Modifying the restitution hypothesis. Chaos 12: 788–799

    Article  MATH  Google Scholar 

  8. Elaydi S.N. (1999). An Introduction to Difference Equations, 2nd edn. Springer, New York

    Google Scholar 

  9. Elharrar V. and Surawicz B. (1983). Cycle length effect on restitution of action potential duration in dog cardiac fibers. Am. J. Physiol. Heart Circ. Physiol. 244: H782–H792

    Google Scholar 

  10. Fenton F. and Karma A. (1998). Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos 8: 20–47

    Article  MATH  Google Scholar 

  11. Fox J.J., Gilmour R.F. and Bodenschatz E. (2002). Conduction block in one dimensional heart fibers. Phys. Rev. Lett. 89: 198101–198104

    Article  Google Scholar 

  12. Frame L.H. and Simson M.B. (1988). Oscillations of conduction, action potential duration and refractoriness: A mechanism for spontaneous termination of reentrant tachycardias. Circulation 78: 1277–1287

    Google Scholar 

  13. Hall G.M., Bahar S. and Gauthier D.J. (1999). Prevalence of rate-dependent behaviors in cardiac muscle. Phys. Rev. Lett. 82: 2995–2998

    Article  Google Scholar 

  14. Hurwitz A. (1964). On the Conditions Under Which an Equation has Only Roots with Negative Real Parts. In: Bellman, R. and Kalaba, R. (eds) Selected Papers on Mathematical Trends in Control Theory, vol. 65., pp. Dover, New York

    Google Scholar 

  15. Ito H. and Glass L. (1992). Theory of reentrant excitation in a ring of cardiac tissue. Physica D 56: 84–106

    Article  Google Scholar 

  16. Jury, E.I., Blanchard, J.: A stability test for linear discrete systems in table form. In: Proceedings of the IRE, vol. 49, pp. 1947–1948 (1961)

  17. Kalb S.S., Dobrovolny H.M., Tolkacheva E.G., Idriss S.F., Krassowska W. and Gauthier D.J. (2004). The restitution portrait: A new method for investigating rate-dependent restitution. J. Cardiovasc. Electrophysiol. 15: 698–709

    Article  Google Scholar 

  18. Karma A. (1993). Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett. 71: 1103–1107

    Article  MATH  Google Scholar 

  19. Karma A. (1994). Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4: 461–472

    Article  Google Scholar 

  20. Keener J.P. (1980). Waves in excitable media. SIAM J. Appl. Math. 39: 528–548

    Article  MATH  Google Scholar 

  21. Keener J.P. and Sneyd J. (1998). Mathematical Physiology. Springer, New York

    MATH  Google Scholar 

  22. Luo C. and Rudy Y. (1994). A dynamic model of the cardiac ventricular action potential. Circ Res 74: 1071–1096

    Google Scholar 

  23. Mitchell C.C. and Schaeffer D.G. (2003). A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65: 767–793

    Article  Google Scholar 

  24. Neu J.C., Preissig R.S. and Krassowska W. (1997). Initiation of propagation in a one-dimensional excitable medium. Physica D 102: 285–299

    Article  MATH  Google Scholar 

  25. Nolasco J.B. and Dahlen R.W. (1968). A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 25: 191–196

    Google Scholar 

  26. Ohara T., Ohara K., Cao J., Lee M., Fishbein M.C., Mandel W.J., Chen P. and Karagueuzian H.S. (2001). Increased wave break during ventricular fibrillation in the epicardial border zone of hearts with healed myocardial infarction. Circulation 103: 1465–1472

    Google Scholar 

  27. Plonsey R. and Barr R.C. (1988). Bioelectricity: A Quantitative Approach. Plenum Press, New York

    Google Scholar 

  28. Rinzel, J., Maginu, K.: Kinematic analysis of wave pattern formation in excitable media. In: Pacault, A., Vidal, C. (eds.) Non-Equilibrium Dynamics in Chemical Systems. Springer, Berlin (1984)

  29. Rosenbaum D.S., Jackson L.E., Smith J.M., Garan H., Ruskin J.N. and Cohen R.J. (1994). Electrical alternans and vulnerability to ventricular arrhythmias. N. Engl. J. Med. 330: 235–241

    Article  Google Scholar 

  30. Schaeffer, D.G., Cain, J.W., Gauthier, D.J., Kalb, S.S., Krassowska, W., Oliver, R.A., Tolkacheva, E.G., Ying, W.: An ionically based mapping model with memory for cardiac restitution. Bull. Math. Biol. (to appear) (2006)

  31. Sedaghat H., Kent C.M. and Wood M.A. (2005). Criteria for the convergence, oscillation and bistability of pulse circulation in a ring of excitable media. SIAM J. Appl. Math. 66: 573–590

    Article  MATH  Google Scholar 

  32. Sedaghat, H., Baumgarten, C., Cain, J.W., Chan, D.M., Cheng, C.K., Kent, C.M., Wood, M.A.: Modeling spontaneous initiation and termination of reentry in cardiac tissue. In: Dynamics Days 2007: International Conference on Chaos and Nonlinear Dynamics, Boston, 3–6 January 2007

  33. Stubna M.D., Rand R.H. and Gilmour R.F. (2002). Analysis of a nonlinear partial difference equation and its application to cardiac dynamics. J. Differ. Equ. Appl. 8: 1147–1169

    Article  MATH  Google Scholar 

  34. Tolkacheva E.G., Schaeffer D.G., Gauthier D.J. and Krassowska W. (2003). Condition for alternans and stability of the 1:1 response pattern in a “memory” model of paced cardiac dynamics. Phys. Rev. E 67: 031904

    Article  Google Scholar 

  35. Tolkacheva E.G., Schaeffer D.G., Gauthier D.J. and Mitchell C.C. (2002). Analysis of the Fenton-Karma model through an approximation by a one-dimensional map. Chaos 12: 1034–1042

    Article  MATH  Google Scholar 

  36. Watanabe M.A., Fenton F.H., Evans S.J., Hastings H.M. and Karma A. (2001). Mechanisms for discordant alternans. J. Cardiovasc. Electrophysiol. 12: 196–206

    Article  Google Scholar 

  37. Yehia A.R., Jeandupeux D., Alonso F. and Guevara M.R. (1999). Hysteresis and bistability in the direct transition from 1:1 to 2:1 rhythm in periodically driven single ventricular cells. Chaos 9: 916–931

    Article  MATH  Google Scholar 

  38. Zaitsev A.V., Berenfeld O., Mironov S.F., Jalife J. and Pertsov A.M. (2000). Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ. Res. 86: 408–417

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Cain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cain, J.W. Criterion for stable reentry in a ring of cardiac tissue. J. Math. Biol. 55, 433–448 (2007). https://doi.org/10.1007/s00285-007-0100-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0100-z

Keywords

Mathematics Subject Classification (2000)

Navigation