Skip to main content
Log in

The asymptotic behavior of solutions of the buffered bistable system

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we study a model for calcium buffering with bistable nonlinearity. We present some results on the stability of equilibrium states and show that there exists a threshold phenomenon in our model. In comparing with the model without buffers, we see that stationary buffers cannot destroy the asymptotic stability of the associated equilibrium states and the threshold phenomenon. Moreover, we also investigate the propagation property of solutions with initial data being a disturbance of one of the stable states which is confined to a half-line. We show that the more stable state will eventually dominate the whole dynamics and that the speed of this propagation (or invading process) is positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allbritton, N., Meyer, T., Stryer, L.: A Range of messenger action of calcium ion and inositol-1,4,5-trisphosphate. Science (Washington, DC) 258, 1812–1815 (1992)

    Google Scholar 

  2. Aronson, D.G.: A comparison method for stability analysis of nonlinear parabolic problems. SIAM Review 20, 245–264 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein, J.A. (ed.), Partial Differential Equations and Related Topics, Lecture notes in Mathematics 446, pp. 5–49. Springer-Verlag, Berlin, 1975

  4. Atri, A., Amundson, J., Clapham, D., Sneyd, J.: A single pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys. J. 65, 1727–1739 (1993)

    Google Scholar 

  5. Berridge, M.J.: Inositol trisphosphate and calcium signalling. Nature (London) 361, 315–325 (1993)

    Article  Google Scholar 

  6. Bezprozvanny, I., Watras, J., Ehrlich, B.E.: Bell-shaped calcium response curves of Ins(1,4,5) P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751–754 (1991)

    Article  Google Scholar 

  7. Britton, N.F.: Reaction-Diffusion Equations and their Applications to Biology. Academic Press, London, 1986

  8. Falcke, M.: Buffers and oscillations in intracellular Ca2+ dynamics. Biophys. J. 84, 28–41 (2003)

    Google Scholar 

  9. Fontanilla, R.A., Nuccitelli, R.: Characterization of the sperm-induced calcium wave in Xenopus eggs using confocal microscopy. Biophys. J. 75, 2079–2087 (1998)

    Google Scholar 

  10. Fulton, B.P., Whitingham, D.G.: Activation of mammalian occytes by intracellular injection of calcium. Nature (London) 273, 149–151 (1978)

    Article  Google Scholar 

  11. Dupont, G., Goldbeter, A.: Properties of intracellular Ca2+ waves generated by a model based on Ca2+-induced Ca2+ release. Biophys. J. 67, 2191–2204 (1994)

    Google Scholar 

  12. Evans, J., Shenk, N.: Solutions to axon equations. Biophys. J. 10, 1090–1101 (1970)

    Google Scholar 

  13. Fife, P.C., McLeod, J.B.: The approach of solutions of non-linear diffusion equations to traveling front solutions. Arch. Rat. Mech. Anal. 65, 335–361 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Finch, E.A., Turner, T.J., Goldin, S.M.: Calcium as a coagonist of inositol-1,4,5-trisphosphate-induced calcium release. Science (Washington, DC) 252, 443–446 (1991)

    Google Scholar 

  15. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, 1964

  16. Girard, S., Luckhoff, A., Lechleiter, J., Sneyd, J., Clapham, D.: Two-dimensional model of calcium waves reproduces the patterns observed in Xenopus laevis oocyte. Biophys. J. 61, 509–517 (1992)

    Google Scholar 

  17. Hastings, S.P.: On traveling wave solutions of the Hodgkin-Huxley equations. Arch. Rational Mech. Anal. 60, 229–257 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Igusa, Y., Miyazaki, S.-I.: Effects of altered extracellular and intracellular calcium concentration on hyperpolarizing responses of the hamster egg. J. Physiol. (London) 340, 611–632 (1983)

    Google Scholar 

  19. Iino, M.: Biphasic Ca2+-dependence of inositol-1,4,5-trisphosphate-induced Ca2+ release in smooth muscle cells of the guinea pig Taenia caeci. J. Gen. Physiol. 95, 1103–1122 (1990)

    Article  Google Scholar 

  20. Jaffe, L.F.: Classes and mechanisms of calcium waves. Cell Calcium 14, 736–745 (1993)

    Article  Google Scholar 

  21. Jafri, M.S., Keizer, J.: On the roles of Ca2+ diffusion, Ca2+ buffers and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys. J. 69, 2139–2153 (1995)

    Google Scholar 

  22. Kaftan, E.J., Ehrlich, B.E., Watras, J.: Inositol 1,4,5-trisphosphate (InsP3) and calcium interact to increase the dynamic range of InsP3 receptor-dependent calcium signaling. J. Gen. Physiol. 110, 529–538 (1997)

    Article  Google Scholar 

  23. Keener, J., Sneyd, J.: Mathematical Physiology. Springer-Verlag, New York, 1998

  24. Klaasen, G.A., Troy, W.C.: The Stability of traveling wave front solutions of a reaction-diffusion system. SIAM J. Appl. Math. 41, 145–167 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25. Klaasen, G.A., Troy, W.C.: The asymptotic behaviour of solutions of a system of reaction-diffusion equations which models the Belousov-Zhabotinskii chemical. J. Diff. Equations 40, 253–278 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kline, J.T., Kline, D.: Regulation of intracellular calcium in the mouse egg: evidence for inositol trisphosphate-induced calcium release, but not calcium-induced calcium release. Biol. Reprod. 50, 193–203 (1994)

    Article  Google Scholar 

  27. Lechleiter, J.D., Clapham, D.E.: Molecular mechanisms of intracellular calcium excitability in Xenopus laevis oocyte. Cell 69, 283–294 (1992)

    Article  Google Scholar 

  28. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific, Singapore, 1996

  29. Li, Y.-X., Rinzel, J.: Equations for InsP3 receptor-mediated [ Ca2+] i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J. Theor. Biol. 166, 461–473 (1994)

    Article  Google Scholar 

  30. Li, Y.-X.: Tango waves in a bidomain model of fertilization calcium waves. Physica D 186, 27–49 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Marshall, I.C.B., Taylor, C.W.: Regulation of inositol 1,4,5-trisphosphate receptors. J. Exp. Biol. 184, 161–182 (1993)

    Google Scholar 

  32. Miyazaki, S.-I., Yuzaki, M., Nakada, K., Shirakawa, H., Nakanishi, S., Nakade, S., Mikoshiba, K.: Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol-1,4,5-trisphosphate receptor in fertilized hamster eggs. Science (Washington, DC) 257, 251–255 (1992)

    Google Scholar 

  33. Murray, J.D.: Mathematical Biology. Springer, Berlin, 1989

  34. Naraghi, M., Neher, E.: Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [ Ca2+] at the mouth of a calcium channel. J. Neurosci. 17, 6961–6973 (1997)

    Google Scholar 

  35. Naraghi, M., Muller, T.H., Neher, E.: Two-dimensional determination of the cellular Ca2+ binding in bovine chromaffin cells. Biophys. J. 75, 1635–1647 (1998)

    Google Scholar 

  36. Neher, E., Augustine, G.J.: Calcium gradients and buffers in bovine chromaffin cells. J. Physiol. (London) 450, 273–301 (1992)

    Google Scholar 

  37. Neher, E.: Usefulness and limitations of linear approximations to the understanding of Ca2+ signals. Cell Calcium 24, 345–357 (1998)

    Article  Google Scholar 

  38. Nowycky, M.C., Pinter, M.J.: Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys. J. 64, 77–91 (1993)

    Google Scholar 

  39. Nuccitelli, R.: How do sperm activate eggs? Curr. Top. Dev. Biol. 25, 1–16 (1991)

    Article  Google Scholar 

  40. Nuccitelli, R., Yim, D.L., Smart, T.: The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1,4,5)P3. Dev. Biol. 158, 200–212 (1993)

    Article  Google Scholar 

  41. Nuccitelli, R. (ed.) A Pratical Guide to the Study of Calcium in Living Cells. Methods in Cell Biology 40, Academic Press, San Diego, 1994

  42. Othmer, H., Tang, T.: Oscillations and waves in a model of InsP3-controlled calcium dynamics. In: Othmer, H., Maini, P.K., Murray, J.D. (eds.), Experimental and Theoretical Advances in Biological Pattern Formation, pp. 277–299. Plenum Press, New Tork, 1993

  43. Parker, I., Ivorra, I.: Inhibition by Ca2+ of inositol trisphosphate-mediated Ca2+ liberation: a possible mechanism for oscillatory release of Ca2+. Proc. Natl. Acad. Sci. USA 87, 260–264 (1990)

    Article  Google Scholar 

  44. Peres, A.: InsP3- and Ca2+-induced Ca2+ release in single mouse oocytes. FEBS Lett. 275, 213–216 (1990)

    Article  Google Scholar 

  45. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer-Verlag, New York, 1999

  46. Rauch, J., Smoller, J.: Qualitative theory of the FitzHugh-Nagumo equations. Advances in Math. 27, 12–44 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ridgway, E.B., Gilkey, J.C., Jaffe, L.F.: Free calcium increases explosively in activating Medaka eggs. Proc. Natl. Acad. Sci. USA 74, 623–627 (1977)

    Article  Google Scholar 

  48. Redheffer, R., Walter, W.: Invariant sets for systems of partial differential equations I: parabolic Equations. Arch. Rational Mech. Anal. 67, 41–52 (1978)

    Article  MathSciNet  Google Scholar 

  49. Sala, F., Hernández-Cruz, A.: Calcium diffusion modeling in a spherical neuron: relevance of buffering properties. Biophys. J. 57, 313–324 (1990)

    Google Scholar 

  50. Schonbek, M.E.: Boundary value problems for the Fitzhugh-Nagumo equations. J. Diff. Equations 30, 119–147 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  51. Slepchenko, B.M., Schaff, J.C., Choi, Y.S.: Numerical approach to fast reactions in reaction-diffusion systems: application to buffered calcium waves in bistable model. J. Comput. Phys. 162, 186–218 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  52. Sherman, A., Li, Y.-X., Keizer, J.: Whole cell models. In: Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J. (eds.), Computatiional Cell Biology, pp. 101–139. Springer-Verlag, New York, 2002

  53. Smith, G.D.: Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. Biophys. J. 71, 3064–3072 (1996)

    Google Scholar 

  54. Smith, G.D., Dai, L., Miura, R.M., Sherman, A.: Asymptotic analysis of buffered calcium diffusion near a point source. SIAM J. Appl. Math. 61, 1816–1838 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  55. Smith, G.: Modeling local and global Ca2+ signals using reaction-diffusion equations. In: Schutter, E.D. (ed.) Computational Neuroscience: Realistic Modeling for Experimentalists. CRC Press, 2001

  56. Smith, G.D., Pearson, J.E., Keizer, J.: Modeling Intracellular Calcium Waves and Sparks. In: Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J. (eds.), Computatiional Cell Biology, pp. 198–229. Springer-Verlag, New York, 2002

  57. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York, 1994

  58. Sneyd, J., Keizer, J., Sanderson, M.J.: Mechanisms of calcium oscillations and waves: A quantitative analysis. FASEB J. 9, 1463–1472 (1995)

    Google Scholar 

  59. Sneyd, J., Dale, P.D., Duffy, A.: Traveling waves in buffered systems: applications to calcium waves. SIAM J. Appl. Math. 58, 1178–1192 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  60. Tsai, J.-C., Sneyd, J.: Existence and stability of traveling waves in buffered systems. SIAM J. Appl. Math. 66, 237–265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. Terasaki, M., Slater, N.T., Fein, A., Schmidek, A., Reese, T.S.: A continuous cellular network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc. Natl. Acad. Sci. USA 91, 7510–7514 (1994)

    Article  Google Scholar 

  62. Volpert, A.I., Volpert, V.A.: Applications of the rotation theory of vector fields to the study of wave solutions of parabolic equations. Trans. Moscow Math. Soc. 52, 59–108 (1990)

    MATH  MathSciNet  Google Scholar 

  63. Wagner, J., Keizer, J.: Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 67, 447–456 (1994)

    Google Scholar 

  64. Wagner, J., Li, Y.-X., Pearson, J., Keizer, J.: Simulation of the Fertilization Ca2+ Wave in Xenopus laevis Eggs. Biophys. J. 75, 2088–2097 (1998)

    Article  Google Scholar 

  65. Watras, J., Bezprozvanny, I., Ehrlich, B.E.: Inositol 1,4,5-trisphosphate-gated channels in cerebellum: presence of multiple conductance states. J. Neurosci. 11, 3239–3245 (1991)

    Google Scholar 

  66. De Young, G., Keizer, J.: A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc. Natl. Acad. Sci. USA 89, 9895–9899 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Chiang Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, JS., Tsai, JC. The asymptotic behavior of solutions of the buffered bistable system. J. Math. Biol. 53, 179–213 (2006). https://doi.org/10.1007/s00285-006-0381-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0381-7

Mathematics Subject Classifications. (2000)

Key words or phrases

Navigation