Skip to main content
Log in

A delay recruitment model of the cardiovascular control system

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a nonlinear delay-differential equation for the human cardiovascular control system, and use it to explore blood pressure and heart rate variability under short-term baroreflex control. The model incorporates an intrinsically stable heart rate in the absence of nervous control, and allows us to compare the baroreflex influence on heart rate and peripheral resistance. Analytical simplifications of the model allow a general investigation of the rôles played by gain and delay, and the effects of ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbiw-Jackson, R.M., Langford, W.F.: Gain-induced oscillations in blood pressure. J. Math. Biol. 37, 203–234 (1998)

    Article  PubMed  Google Scholar 

  2. Berne, R.M., Levy, M.N.: Principles of Physiology. (Mosby-Year Book, Second Edn, 1996)

  3. Bertram, D., Barres, C., Cheng, Y., Julien, C.: Norepinephrine reuptake, baroreflex dynamics, and arterial pressure variability in rats. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 279 (4), R1257–R1267 (2000)

    Google Scholar 

  4. Bertram, D., Barres, C., Cuisinard, G., Julien, C.: The arterial baroreceptor reflex of the rat exhibits positive feedback properties at the frequency of Mayer waves. J. Physiol. - London 513 (1), 251–261 (1998)

    Article  Google Scholar 

  5. Bertram, D., Barres, C., Julien, C.: Effect of desipramine on spontaneous arterial pressure oscillations in the rat. Eur. J. Pharmacology 378 (3), 265–271 (1999)

    Article  Google Scholar 

  6. Burgess, D.E., Hundley, J.C., Li, S-G., Randall, D.C., Brown, D.R.: First-order differential-delay equation for the baroreflex predicts the 0.4-Hz blood pressure rhythm in rats. Am. J. Physiol. 273, R1878–R1884 (1997)

    Google Scholar 

  7. Cavalcanti, S., Ursino, M.: Dynamical modelling of sympathetic and parasympathetic interplay on the baroreceptor heart rate control. Surv. Math. Ind. 7, 221–237 (1997)

    Google Scholar 

  8. Cevese, A., Gulli, G., Polati, E., Gottin, L., Grasso, R.: Baroreflex and oscillation of heart period at 0.1 Hz studied by α-blockade and cross-spectral analysis in healthy humans. J. Physiol. 531 (1), 235–244 (2001)

    Google Scholar 

  9. Chow, S.-N., Mallet-Paret, J.: Singularly perturbed delay-differential equations. In: Coupled Nonlinear Oscillators, J. Chandra, A.C. Scott (eds.), North-Holland, 1983

  10. Cooley, R.L., Montano, N., Cogliati, C., van de Borne, P., Richenbacher, W., Oren, R., Somers, V.K.: Evidence for a central origin of the low-frequency oscillation in RR-interval variability. Circulation 98, 556–561 (1998)

    PubMed  Google Scholar 

  11. deBoer, R.W., Karemaker, J.M., Strackee, J.: Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am. J. Physiol. 253 (Heart Circ. Physiol. 22), 680–689 (1987)

    Google Scholar 

  12. Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.-O.: Delay Equations: Functional, Complex and Nonlinear Analysis. Appl. Math. Sci. 110, Springer, 1995

  13. Fowler, A.C.: Mathematical Models in the Applied Sciences. Cambridge Texts in Applied Mathematics, CUP 1997

  14. Gebber, G.L., Zhong, S., Zhou, S.-Y., Barman, S.M.: Nonlinear dynamics of the frequency locking of baroreceptor and sympathetic rhythms. Am. J. Physiol. 273 (Regulatory Integrative Comp. Physiol. 42), R1932–R1945 (1997)

    Google Scholar 

  15. Girard, A., Meilhac, B., Mouniervehier, C., Elghozi, J.L.: Effects of beta-adrenergic-blockade on short-term variability of blood-pressure and heart rate in essential hypertension. Clinical & Exp. Hypertension 17 (Iss 1-2), 15–27 (1995)

    Google Scholar 

  16. Greenwood, J.P., Stoker, J.B., Mary, D.: Single-unit sympathetic discharge –- quantitative assessment in human hypertensive disease. Circulation 100, 1305–1310 (1999)

    PubMed  Google Scholar 

  17. Grodins, F.S.: Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Q. Rev. Biol. 34, 93–116 (1959)

    Article  PubMed  Google Scholar 

  18. Guyton, A.: Textbook of Medical Physiology. (W.B. Saunders Co., London, 1981)

  19. Guyton, A.C., Harris, J.W.: Pressoreceptor-autonomic oscillation: a probable cause of vasomotor waves. Am. J. Physiol. 165, 158–166 (1951)

    PubMed  Google Scholar 

  20. Kaplan, D.T., Furman, M.I., Pincus, S.M., Ryan, S.M., Lipsitz, L.A., Goldberger, A.L.: Aging and the complexity of cardiovascular dynamics. Biophys. J. 59, 945–949 (1991)

    PubMed  Google Scholar 

  21. Korner, P.: Integrative neural cardiovascular control. Physiol. Rev. 51 (2), 312–367 (1971)

    Google Scholar 

  22. Libsitz, L.A., Goldberger, A.L.: Loss of complexity and aging: Potential applications of fractals and chaos theory to senescence. JAMA 267, 1806–1809 (1992)

    Article  PubMed  Google Scholar 

  23. Liu, H-K., Guild, S-J., Ringwood, J.V., Barrett, C.J., Leonard, B.L., Nguang, S-K., Navakatikyan, M.A., Malpas, S.C.: Dynamic baroreflex control of blood pressure: influence of the heart vs. peripheral resistance. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 283, R533–R542 (2002)

    Google Scholar 

  24. Madwed, J.B., Albrecht, P., Mark, R.G., Cohen, R.J.: Low frequency oscillations in arterial pressure and heart rate: a simple computer model. Am. J. Physiol. 256, H1573–H1579 (1989)

    Google Scholar 

  25. Magosso, E., Biavati, V., Ursino, M.: Role of the baroreflex in cardiovascular instability: a modeling study. Cardiov. Eng. 1 (2), 101–115 (2001)

    Article  Google Scholar 

  26. Malpas, S.C.: Neural influences on cardiovascular variability: possibilities and pitfalls. Am. J. Physiol. Heart Circ. Physiol. 282, H6–H20 (2002)

    Google Scholar 

  27. Montano, N., Gnecchi-Ruscone, T., Porta, A., Lombardi, F., Malliani, A., Barman, S.M.: Presence of vasomotor and respiratory rhythms in the discharge of single medullary neurons involved in the regulation of cardiovascular system. J. Auton. Nerv. Syst. 57, 116–122 (1996)

    Article  PubMed  Google Scholar 

  28. Murray, J.D.: Mathematical biology. I: an introduction. (Springer-Verlag, Berlin 2002), pp. 23–27

  29. Ottesen, J.T.: Modelling of the baroreflex-feedback mechanism with time-delay. J. Math. Biol. 36, 41–63 (1997)

    Article  PubMed  Google Scholar 

  30. Ottesen, J.T., Olufsen, M.S., Larsen, J.K.: Applied Mathematical Models in Human Physiology. SIAM Monographs on Mathematical Modelling and Computation, 2004

  31. Ringwood, J.V., Malpas, S.C.: Slow oscillations in blood pressure via a nonlinear feedback model. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 280, R1105–R1115 (2001)

    Google Scholar 

  32. Rosenblum, M., Kurths, J.: A model of neural control of the heart rate. Physica A 215, 439–450 (1995)

    Article  Google Scholar 

  33. Rowel, L.B.: Human Cardiovascular Control. Oxford University Press, 1993

  34. Seidel, H., Herzel, H.: Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex. Physica D 115, 145–160 (1998)

    Article  Google Scholar 

  35. Singh, N., Prasad, S., Singer, D.R., MacAllister, R.J.: Ageing is associated with impairment of nitric oxide and prostanoid dilator pathways in the human forearm. Clin. Sci. (Lond). 102 (5), 595–600 (2002)

    Google Scholar 

  36. Ursino, M.: Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am. J. Physiol. 275 (Heart Circ. Physiol. 44), H1733–H1747 (1998)

    Google Scholar 

  37. Ursino, M., Antonucci, M., Belardinelli, E.: Role of active changes in venous capacity by the carotid baroreflex: analysis with a mathematical model. Am. J. Physiol. 267 (Heart Circ. Physiol. 36), H2531–H2546 (1994)

    Google Scholar 

  38. Ursino, M., Fiorenzi, A., Belardinelli, E.: The role of pressure pulsatility in the carotid baroreflex control: a computer simulation study. Comput. Biol. Med. 26 (4), 297–314 (1996)

    Article  Google Scholar 

  39. Wattis, J.A.D.: Bifurcations and Chaos in a Differential-Delay Equation, an MSc Dissertation in Mathematical Modelling and Numerical Analysis, University of Oxford, September 1990

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.J. McGuinness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, A., McGuinness, M. A delay recruitment model of the cardiovascular control system. J. Math. Biol. 51, 508–526 (2005). https://doi.org/10.1007/s00285-005-0339-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-005-0339-1

Key words or phrases

Navigation