Skip to main content
Log in

Transient oscillations induced by delayed growth response in the chemostat

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

In this paper, in order to try to account for the transient oscillations observed in chemostat experiments, we consider a model of single species growth in a chemostat that involves delayed growth response. The time delay models the lag involved in the nutrient conversion process. Both monotone response functions and nonmonotone response functions are considered. The nonmonotone response function models the inhibitory effects of growth response of certain nutrients when concentrations are too high. By applying local and global Hopf bifurcation theorems, we prove that the model has unstable periodic solutions that bifurcate from unstable nonnegative equilibria as the parameter measuring the delay passes through certain critical values and that these local periodic solutions can persist, even if the delay parameter moves far from the critical (local) bifurcation values.

When there are two positive equilibria, then positive periodic solutions can exist. When there is a unique positive equilibrium, the model does not have positive periodic oscillations and the unique positive equilibrium is globally asymptotically stable. However, the model can have periodic solutions that change sign. Although these solutions are not biologically meaningful, provided the initial data starts close enough to the unstable manifold of one of these periodic solutions they may still help to account for the transient oscillations that have been frequently observed in chemostat experiments. Numerical simulations are provided to illustrate that the model has varying degrees of transient oscillatory behaviour that can be controlled by the choice of the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akian, M., Bismuth, S.: Instability of rapidly-oscillating periodic solutions for discontinuous differential delay equations. Differential Integral Equations 15, 53–90 (2002)

    Google Scholar 

  2. Andrews, F.: A Mathematical model for the continuous culture of microorganism utilizing inhibitory substrates. Biotechnol. Bioeng. 10, 707–723 (1968)

    Article  CAS  Google Scholar 

  3. Aris, R., Humphrey, A.E.: Dynamics of a chemostat in which two organisms compete for a common substrate. Biotechnol. Bioeng. 19, 1375–1386 (1977)

    Article  CAS  Google Scholar 

  4. Barford, J.P., Pamment, N.B., Hall, R.J.: Lag phases and transients. In: Microbial Population Dynamics, M.J. Bazin (ed.), CRC Press, Florida, 1982, pp. 55–89

  5. Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York, 1963

  6. Boon,B., Laudelout, H.: Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochem. J. 85, 440–447 (1962)

    CAS  PubMed  Google Scholar 

  7. Bush, A.W., Cook, A.E.: The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater. J. Theor. Biol. 63, 385–395 (1976)

    Article  CAS  PubMed  Google Scholar 

  8. Butler, G.J., Wolkowicz, G.S.K.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45, 138–151 (1985)

    Article  Google Scholar 

  9. Caperon, J.: Time lag in population growth response of isochrysis galbana to a variable nitrate environment. Ecology 50, 188–192 (1969)

    CAS  Google Scholar 

  10. Chi, C.T., Howell, J.A.: Transient behaviour of a continuous stirred tank biological reactor utilising phenol as an inhibitory substrate. Biotechnol. Bioeng. 18, 63–80 (1976)

    Article  CAS  Google Scholar 

  11. Chow, S.N., Mallet-Paret, J.: The Fuller index and global Hopf bifurcation. J. Differential Equations 29, 66–85 (1978)

    Article  Google Scholar 

  12. Cunningham, A., Maas, P.: Time lag and nutrient storage effects in the transient growth response of Chlamydomonas reinhardii in nitrogen-limited batch and continuous culture. J. Gen. Microbiol. 104, 227–231 (1978)

    Google Scholar 

  13. Cunningham, A., Maas, P.: The growth dynamics of unicellular algae. In: Microbial Population Dynamics, M.J. Bazin (ed.), CRC Press, Florida, 1982, pp. 167–188

  14. Cunningham, A., Nisbet, R.M.: Time lag and co-operativity in the transient growth dynamics of microalgae. J. Theor. Biol. 84, 189–203 (1980)

    CAS  PubMed  Google Scholar 

  15. Cunningham, A., Nisbet, R.M.: Transients and oscillations in continuous culture. In: Mathematics and Microbiology, M.J. Bazin (ed.), Academic Press, New York, 1983

  16. Diekmann, O., van Gils, S.A., Lunel, S.M.V., Walther, H.-O.: Delay Equations, Functional-, Complex-, and Nonlinear Analysis. Springer-Verlag, New York, 1995

  17. Droop, M.R.: Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth, and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. UK 48, 689–733 (1968)

    Google Scholar 

  18. Edwards, V.H.: The influence of high substrate concentrations on microbial kinetics. Eiothechnol. Bioeng. 12, 679–712 (1970)

    CAS  Google Scholar 

  19. Ellermeyer, S.F.: Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth. SIAM J. Appl. Math. 54, 456–465 (1994)

    Article  Google Scholar 

  20. Erbe, L.H., Krawcewicz, W., Geba, K., Wu, J.: S1-Degree and global Hopf bifurcation theory of functional differential equations. J. Differential Equations 98, 277–198 (1992)

    Article  Google Scholar 

  21. Freedman, H.I., So, J.W.-H., Waltman, P.: Coexistence in a model of competition in the chemostat incorporating discrete delays. SIAM J. Appl. Math. 49, 859–870 (1989)

    Article  Google Scholar 

  22. Freedman, H.I., So, J.W.-H., Waltman, P.: Chemostat competition with time delays. In: Biomedical Modelling and Simulation, J. Eisenfeld, D.S. Levine (eds.), Scientific Publishing Co., 1989, pp. 171–173

  23. Golpalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic Publishers, Dordrecht, 1992

  24. Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Volume 1, Springer-Verlag, New York, 1985

  25. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993

  26. Hansen, S.R., Hubbell, S.P.: Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes. Science 207, 1491–1493 (1980)

    CAS  PubMed  Google Scholar 

  27. Hassard, B.D., Kazarinoff, N.D., Wan, Y.-H.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge, 1981

  28. Hirsch, W.M., Hanisch, H., Gabriel, J.-P.: Differential equation models of some parasitic infections: methods for the study of asymptotic behavior. Commun. Pure Appl. Math. 38, 733–753 (1985)

    Google Scholar 

  29. Hsu, S.B., Hubbell, S., Waltman, P.: A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms. SIAM J. Appl. Math. 32, 366–383 (1977)

    Article  Google Scholar 

  30. Jäger, W., Krömker, S., Tang, B.: Quiescence and Transient growth dynamics in chemostat models. Math. Biosci. 119, 225–239 (1994)

    Article  PubMed  Google Scholar 

  31. Krawcewicz, W., Wu, J., Xia, H.: Global bifurcation theory for condensing fields and neutral equations with applications to lossless transmission problems. Canad. Appl. Math. Quarterly 1, 167–220 (1993)

    Google Scholar 

  32. Lange, K., Oyarzun, F.J.: The attractiveness of the Droop equations. Math. Biosci. 111, 261–278 (1992)

    Article  CAS  PubMed  Google Scholar 

  33. Lee, S.S., Jackman, A.P.: A two-state microbial growth kinetics model. Water Research 9, 491–498 (1975)

    Article  Google Scholar 

  34. Li, T.Y.: Bounds for the periods of periodic solutions of differential delay equations. J. Math. Anal. Appl. 49, 124–129 (1975)

    Article  Google Scholar 

  35. MacDonald, N.: Time delays in chemostat models. In: Microbial Population Dynamics, M.J. Bazin (ed.), CRC Press, Florida, 1982

  36. Macdonald, N.: Time lag in biological Models. Lecture Notes in biomathematics, 27, Springer-Verlag, Heidelberg, 1978

  37. Monod, J.: La technique de culture continue; théorie et applications. Ann. Inst. Pasteur 79, 390–401 (1950)

    CAS  Google Scholar 

  38. Nisbet, R.M., Gurney, W.S.C.: Modelling Fluctuating Populations, J. Wiley & Sons, New York, 1982

  39. Oyarzun, F.J., Lange, K.: The attractiveness of the Droop equations II. Generic uptake and growth functions. Math. Biosci. 121, 127–139 (1994)

    CAS  Google Scholar 

  40. Picket, A.M.: Growth in a changing environment. In: Microbial Population Dynamics, M.J. Bazin (ed.), CRC Press, Florida, 1982, pp. 91–124

  41. Ramkrishna, D., Fredrickson, A.G., Tsuchiya, H.M.: Dynamics of microbial propagation: models considering inhibitors and variable cell composition. Biotechnol. Bioeng. 9, 129–170 (1967)

    Article  Google Scholar 

  42. Ruan, S., Wolkowicz, G.S.K.: Bifurcation analysis of a chemostat model with a distributed delay. J. Math. Anal. Appl. 204, 786–812 (1996)

    Article  Google Scholar 

  43. Smith, H., Waltman, P.: Competition for a single limiting resource in continuous culture: the variable-yield model. SIAM J. Appl. Math. 54, 1113–1131 (1994)

    Article  Google Scholar 

  44. Smith, H., Waltman, P.: The Theory of the Chemostat, Cambridge University Press, 1995

  45. Tang, B., Sitomer, A., Jackson, T.: Population dynamics and competition in chemostat models with adaptive nutrient uptake. J. Math. Biol. 35, 453–479 (1997)

    Article  CAS  PubMed  Google Scholar 

  46. Tang, B., Wolkowicz, G.S.K.: Mathematical models of microbial growth and competition in the chemostat regulated by cell-bound extracellular enzymes. J. Math. Biol. 31, 1–23 (1992)

    Article  Google Scholar 

  47. Thingstad, T.F., Langeland, T.I.: Dynamics of chemostat culture: the effect of a delay in cell response. J. Theor. Biol. 48, 149–159 (1974)

    Article  CAS  PubMed  Google Scholar 

  48. Wang, W., Ma, Z.: Convergence in the Chemostat model with delayed response in growth. System Sci. Math. Sci. 12, 23–32 (1999)

    Google Scholar 

  49. Williams, F.M.: Dynamics of microbial populations. In: System Analysis and Simulation in Ecology, P. Patter (ed.), Vol. 1, New York, Academic Press, pp. 197–267

  50. Wolkowicz, G.S.K., Lu, Z.: Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 52, 222–233 (1992)

    Article  Google Scholar 

  51. Wolkowicz, G.S.K., Xia, H.: Global asymptotic behavior of a chemostat model with discrete delays. SIAM J. Appl. Math. 57, 1019–1043 (1997)

    Article  Google Scholar 

  52. Wolkowicz, G.S.K., Xia, H., Ruan, S.: Competition in the chemostat: A distributed delay model and its global asymptotic behavior. SIAM J. Appl. Math. 57, 1281–1310 (1997)

    Article  Google Scholar 

  53. Wolkowicz, G.S.K., Xia, H., Wu, J.: Global dynamics of a chemostat competition model with distributed delay. J. Math. Biol. 38, 285–316 (1999)

    Article  Google Scholar 

  54. Yang, R.D., Humphrey, A.E.: Dynamics and steady state studies of phenol biodegration in pure and mixed cultures. Biotechnol. Bioeng. 17, 1211–1235 (1975)

    Article  CAS  PubMed  Google Scholar 

  55. Zhao, T.: Global periodic solutions for a differential delay system modelling a microbial population in the chemostat. J. Math. Anal. Appl. 193, 329–352 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mathematics Subject Classification: 34D20, 34K20, 92D25

Research was partially supported by NSERC of Canada.

This work was partly done while this author was a postdoc at McMaster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, H., Wolkowicz, G. & Wang, L. Transient oscillations induced by delayed growth response in the chemostat. J. Math. Biol. 50, 489–530 (2005). https://doi.org/10.1007/s00285-004-0311-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0311-5

Key words or phrases:

Navigation