Skip to main content
Log in

The competitive dynamics between tumor cells, a replication-competent virus and an immune response

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

Replication-competent viruses have been used as an alternative therapeutic approach for cancer treatment. However, new clinical data revealed an innate immune response to virus that may mitigate the effects of treatment. Recently, Wein, Wu and Kirn have established a model which describes the interaction between tumor cells, a replication-competent virus and an immune response (Cancer Research 63 (2003):1317–1324). The purpose of this paper is to extend their model from the viewpoints of mathematics and biology and then prove global existence and uniqueness of solution to this new model, to study the dynamics of this novel therapy for cancers, and to explore a explicit threshold of the intensity of the immune response for controlling the tumor. We also study a time-delayed version of the model. We analytically prove that there exists a critical value τ0 of the time-delay τ such that the system has a periodic solution if τ>τ0. Numerical simulations are given to verify the analytical results. Furthermore, we numerically study the spatio-temporal dynamics of the model. The effects of the diffusivity of the immune response on the tumor growth are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam, J.: A simplified mathematical model of tumor growth. Math. Biosci. 81, 224–229 (1986)

    Article  Google Scholar 

  2. Adam, J., Bellomo, N.: A survey of models for tumor-immune system dynamics. Boston, MA: Birkhäuser, 1997

  3. Ambrosi, D., Bellomo, N., Preziosi, L.: Modelling the immune response to tumor etherogenity and progression. J. Thero. Medicine 1, 51–61 (2002)

    Article  Google Scholar 

  4. Becciolini, A., Balzi, M., Barbarisi, M., Faraoni, P., Biggeri, A., Potten, C.S.: 3H-thymidine labelling index (TLI) as a marker of tumour growth heterogeneity: evaluation in human solid carcinomas. Cell Prolif. 30, 117–126 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York, 1963

  6. Bellomo, N., Bellouquid, A., De Angelis, E.: The modelling of the immune competition by generalized kinetic (Boltzmann) models: review and research perspectives. Math. Comut. Modelling 37, 65–86 (2003)

    Google Scholar 

  7. Bellomo, N., Forni, G.: Dynamics of tumor interaction with the host immune system. Math. Comput. Modelling 20, 107–122 (1994)

    Google Scholar 

  8. Bischoff, J.R. et al.: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996)

    CAS  PubMed  Google Scholar 

  9. Britton, N., Chaplain, M.: A qualitative analysis of some models of tissue growth. Math. Biosci. 113, 77–89 (1993)

    CAS  PubMed  Google Scholar 

  10. Byrne, H.M.: A weakly nonlinear analysis of a model of vascular solid tumour growth. J. Math. Biol. 39, 59–89 (1999)

    CAS  PubMed  Google Scholar 

  11. Byrne, H.M., Chaplain, M.A.J.: Growth of nonnecrotic tumours in the presence and absence of inhibitors. Mathematical Biosciences 181, 130–151 (1995)

    Google Scholar 

  12. Byrne, H., Chaplain, M.: Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135, 187–216 (1996)

    CAS  PubMed  Google Scholar 

  13. Byrne, H.M., Chaplain, M.A.J.: Free boundary value problems associated with growth and development of multicellular spheroids. European J. Appl. Math. 8, 639–358 (1997)

    Google Scholar 

  14. Chaplain, M.A.J.: Reaction-diffusion prepatterning and its potential role in tumor invasion. J. Bio. Sys. 3, 929–936 (1995)

    Google Scholar 

  15. Chaplain, M.A.J., Ganesh, M., Graham, I.G.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42, 387–423 (2001)

    CAS  PubMed  Google Scholar 

  16. Chaplain, M.A.J., Kuznetsov, V.A., James, Z.H., Stepanova, L.A.: Spatio-temporal dynamics of the immune system response to cancer. Proceedings of the mathematical Models in Medical and Health Sciences Conference (eds. M. A. Horn, G. Simonett, G. Webb), Vanderbilt University Press, 1998, ISBN 0-8265-1310-7

  17. Coffey, M.C., Strong, J.E., Forsyth, P.A., Lee, P.W.K.: Reovirus therapy of tumors with activated Ras pathways. Science 282, 1332–1334 (1998)

    CAS  PubMed  Google Scholar 

  18. Crampin, E.J., Mani, P.K.: Modelling biological pattern formation: the role of domain growth. Comments on Theoretical Biology 3, 229–249 (2001)

    Google Scholar 

  19. Cui, S., Friedman, A.: Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci. 164, 103–137 (2000)

    CAS  PubMed  Google Scholar 

  20. Cui, S., Friedman, A.: Analysis of a mathematical model of the growth of necrotic tumors. J. Math. Anal. Appl. 255, 636–677 (2001)

    Google Scholar 

  21. De Angelis, E., Jabin, P.E.: Analysis of a mean field modelling of tumor and immune system competition. Math. Models Meth. Appl. Sci. 13, 197–220 (2003)

    Google Scholar 

  22. Freyer, J.P., Sutherland, R.M.: Proliferative and clonogenic heterogeneity of cells from EMT6/R0 multicellular spheroids induced by the glucose and oxygen supply. Cancer Res. 46, 3513–3520 (1986)

    CAS  PubMed  Google Scholar 

  23. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, NJ, 1964

  24. Friedman, A., Reitich, F.: Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38, 262–284 (1999)

    CAS  PubMed  Google Scholar 

  25. Friedman, A., Reitich, F.: Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth. Trans. Am. Math. Soc. 353, 1587–1634 (2000)

    Google Scholar 

  26. Friedman, A., Reitich, F.: On the existence of spatially patterned dormant malignancies in a model for the growth of non-necrotic vascular tumor. Math. Models and Methods in Appl. Sciences 77, 1–25 (2001)

    Google Scholar 

  27. Friedman, A., Tao, Y.: Analysis of a model of a virus that selectively in tumor cells. J. Math. Biol. 47, 391–423 (2003)

    PubMed  Google Scholar 

  28. Ganly, I., Kirn, D., Eckhardt, G., Rodriguez, G.I., Soutar, D.S., Otto, R., Robertson, A.G., Park, O., Gulley, M.L., Heise, C., Von Hoff, D.D., Kaye, S.B., Eckhardt, S.G.: A phase I study of Onyx-015, an E1B-attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clinical Cancer Res. 6, 798–806 (2000)

    CAS  Google Scholar 

  29. Gerlowski, L.E., Jain, R.K.: Microvascular permeability of normal and neoplastic tissues. Microvas. Res. 31, 288–306 (1986)

    CAS  Google Scholar 

  30. Greenspan, H.: Models for the growth of solid tumor by diffusion. Stud. Appl. Math 51, 317–340 (1972)

    Google Scholar 

  31. Greenspan, H.: On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229–242 (1976)

    CAS  PubMed  Google Scholar 

  32. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theorey and Applications of Hopf Bifurcation. Cambridge University, Cambridge, 1981

  33. Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D.D., Kirn, D.H.: ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med. 3, 639–645 (1997)

    CAS  PubMed  Google Scholar 

  34. Hicks, K.O., Ohms, S.J., vanZijl, P.L., Hunter, P.J., Wilson, E.R.: An experimental and mathematical model for the extravascular transport of a DNA intercalator in tumours. Br. J. Canc. 76, 894–903 (1997)

    CAS  Google Scholar 

  35. Jackson, T.L., Byrne, H.M.: A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci. 164, 17–38 (2000)

    CAS  PubMed  MathSciNet  Google Scholar 

  36. Jain, R.: Barriers to drug delivery in solid tumors. Sci. Am. 271, 58–65 (1994)

    CAS  Google Scholar 

  37. Jannink, I., Risberg, B., Vandiest, P.J., Baak, J.P.A.: Heterogeneity of mitotic-activity in breast-cancer. Histopathol. 29, 421–428 (1996)

    CAS  Google Scholar 

  38. Kuang, Y.: Delay Differential Equations: with Application to Population Dynamics. Academic Press, Boston, 1993

  39. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. Am. Math. Soc. Transl., Vol. 23, American Mathematics Society, Providence, RI, 1968

  40. Levin, V.A., Patlak, C.s., Landahl, H.D.: Heuristic modelling of drug delivery to malignant brain tumours. J. Pharm. Biopharm. 8, 257–296 (1980)

    CAS  Google Scholar 

  41. Li, T.: Global Classical Solutions for Quasilinear Hyperbolic System. John Wiley and Sons, New York, 1994

  42. Matzavinos, A., Chaplain, M.A.J., Kuznetsov, V.: Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol. IMA J. 21, 1–34 (2004)

    Google Scholar 

  43. Murray, J.D.: Mathematical Biology (Second Edition). Springer-Verlag, London, 1993

  44. Nemunaitis, J., Ganly, I., Khuri, F., Arseneau, J., Kuhn, J., McCarty, T., Landers, S., Maples, P., Romel, L., Randley, B., Reid, T., Kaye, S., Kirn, D.: Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 60, 6359–6366 (2000)

    CAS  PubMed  Google Scholar 

  45. Nemunaitis, J., Cunningham, C., Buchanan, A., Blackburn, A., Edelman, G., Maples, P., Netto, G., Tong, A., Randley, B., Olson, S., Kirn, D.: Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Therapy 8, 746–759 (2001)

    CAS  PubMed  Google Scholar 

  46. Oelschläger, K.: The spread of a parasitic infection in a spatially distributed host. J. Math. Biol. 30, 321–354 (1992)

    PubMed  MathSciNet  Google Scholar 

  47. Owen, M., Sherratt, J.A.: Pattern formation and spatio-temporal irregularity in a model for macrophage-tumour interactions. J. theor. Biol. 189, 63–80 (1997)

    CAS  PubMed  Google Scholar 

  48. Owen, M., Sherratt, J.A.: Mathematical modelling of macrophage dynamics in tumours. Math. Models Methods Appl. Sci. 4, 513–539 (199)

    Google Scholar 

  49. Owen, M., Sherratt, J.A.: Modelling the macrophage invasion of tumours: Effects on growth and composition. IMA J. Math. Appl. Med. Biol. 15, 165–185 (1998)

    CAS  PubMed  Google Scholar 

  50. Palmqvist, R., Oberg, A., Bergstrom, C., Rutegard, J.N., Zackrisson, B., Stenling, R.: Systematic heterogeneity and prognostic significance of cell proliferation in colorectal cancer. Br. J. Canver 77, 917–925 (1998)

    CAS  Google Scholar 

  51. Pettet, G., Please, C.P., Tindall, M.J., McElwain, D.: The migration of cells in multicell tumor spheroids. Bull. Math. Biol. 63, 231–257 (2001)

    CAS  PubMed  Google Scholar 

  52. Rodriguez, R., Schuur, E.R., Lim, H.Y., Henderson, G.A., Simons, J.W., Henderson, D.R.: Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563 (1997)

    CAS  PubMed  Google Scholar 

  53. Routes, J.M., Ryan, S., Clase, A., Miura, T., Kuhl, A., Potter, T.A., Cook, J.L.: Adenovirus E1A oncogene expression in tumor cells enhances killing by TNF-related apoptosis-inducing ligand (TRAIL). J. Immunol. 165, 4522–4527 (2000)

    CAS  PubMed  Google Scholar 

  54. Sessa, F., Bonato, M., Bisoni, D., Bosi, F., Capella, C.: Evidence of a wide heterogeneity in cancer cell population in gallbladder adenocarcinomas. Lab. Invest. 76, 860 (1997)

    Google Scholar 

  55. Sherratt, J.A.: Oscillatory and chaotic wakes behind moving boundaries in reaction-diffusion systems. Dynamics and Stability of Systems 4, 303–324 (1996)

    Google Scholar 

  56. Sherrat, J., Chaplain, M.: A new mathematical model for avascular tumor growth. J. Math. Biol. 43, 291–312 (2001)

    PubMed  Google Scholar 

  57. Swabb, E.A., Wei, J., Gullino, P.M.: Diffusion and convection in normal and neoplastic tissues. Cancer Res. 34, 2814–2822 (1974)

    CAS  PubMed  Google Scholar 

  58. Tao, Y., Yoshida, N., Guo, Q.: Nonlinear analysis of a model of vascular tumour growth and treatment. Nonlinearity 17, 867–895 (2004)

    Google Scholar 

  59. Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumor growth II: Modelling growth saturation. IMA J. Math. Appl. Med. Biol. 15, 1–42 (1998)

    Google Scholar 

  60. Ward, J.P., King, J.R.: Mathematical modelling of drug transport in tumour multicelll spheroids and monolayer cultures. Math. Biosci. 181, 177–207 (2003)

    CAS  PubMed  Google Scholar 

  61. Wein, L.M., Wu, J.T., Kirn, D.H.: Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res. 63, 1317–1324 (2003)

    CAS  PubMed  Google Scholar 

  62. Wodarz, D.: Viruses as antitumor weapons: defining conditions for tumor remission. Cancer Res. 61, 3501–3507 (2001)

    CAS  PubMed  Google Scholar 

  63. Wu, J.T., Byrne, H.M., Kirn, D.H., Wein, L.M.: Modeling and analysis of a virus that replicates selectively in tumor cells. Bull. Math. Biol. 63, 731–768 (2001)

    CAS  PubMed  Google Scholar 

  64. Wu, J.T., Kirn, D.H., Wein, L.M.: Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response. Bull. Math. Biol. 66, 605–625 (2004)

    PubMed  Google Scholar 

  65. Yoon, S.S., Carroll, N.M., Chiocca, E.A., Tanabe, K.K.: Cancer gene therapy using a replication-competent herpes simplex virus type I vector. Ann. Surg. 228, 366–374 (1998)

    CAS  PubMed  Google Scholar 

  66. Yoshida, K., Kyo, E., Tsujino, T., Sano, T., Niimoto, M., Tahara, E.: Expression of epidermal growth factor, transforming growth factor-α and their receptor genes in human carcinomas: implication for autocrine growth. Cancer Res. 81, 43–51 (1990)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youshan Tao.

Additional information

Mathematics Subject Classification (2000): 35R35, 92A15

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Y., Guo, Q. The competitive dynamics between tumor cells, a replication-competent virus and an immune response. J. Math. Biol. 51, 37–74 (2005). https://doi.org/10.1007/s00285-004-0310-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0310-6

Key words or phrases:

Navigation