Skip to main content

Advertisement

Log in

An algorithm for molecular dissection of tumor progression

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

The volumetric growth of tumor cells as a function of time is most often likely to be a complex trait, controlled by the combined influences of multiple genes and environmental influences. Genetic mapping has proven to be a powerful tool for detecting and identifying specific genes affecting complex traits, i.e., quantitative trait loci (QTL), based on polymorphic markers. In this article, we present a novel statistical model for genetic mapping of QTL governing tumor growth trajectories in humans. In principle, this model is a combination of functional mapping proposed to map function-valued traits and linkage disequilibrium mapping designed to provide high resolution mapping of QTL by making use of recombination events created at a historic time. We implement an EM-simplex hybrid algorithm for parameter estimation, in which a closed-form solution for the EM algorithm is derived to estimate the population genetic parameters of QTL including the allele frequencies and the coefficient of linkage disequilibrium, and the simplex algorithm incorporated to estimate the curve parameters describing the dynamic changes of cancer cells for different QTL genotypes. Extensive simulations are performed to investigate the statistical properties of our model. Through a number of hypothesis tests, our model allows for cutting-edge studies aimed to decipher the genetic mechanisms underlying cancer growth, development and differentiation. The implications of our model in gene therapy for cancer research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balmain, A.: Cancer as a complex genetic trait: Tumor susceptibility in humans and mouse models. Cell 108, 145–152 (2002)

    Article  Google Scholar 

  2. von Bertalanffy, L.: Quantitative laws for metabolism and growth. Quart. Rev. Biol. 32, 217–231 (1957)

    Article  Google Scholar 

  3. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. Royal Stat. Soc. Series B 26, 241–252 (1964)

    Google Scholar 

  4. Brennan, P.: Gene-environment interaction and aetiology of cancer: what does it mean and how can we measure it. Carcinogenesis 23, 381–387 (2002)

    Article  Google Scholar 

  5. Brunton, G.F., Wheldon, T.E.: Characteristic species-dependent growth patterns of mammalian neoplasms. Cell Tissue Kinetics 11, 161–175 (1978)

    Google Scholar 

  6. Carroll, R.J., Ruppert, D.: Power-transformations when fitting theoretical models to data. J. American Stat. Association 79, 321–328 (1984)

    Google Scholar 

  7. Churchill, G.A., Doerge, R.W.: Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994)

    CAS  PubMed  Google Scholar 

  8. Demant, P.: Cancer susceptibility in the mouse: Genetics, biology and implications for human cancer. Nature Genetics 4, 721–734 (2003)

    Article  Google Scholar 

  9. Demicheli, R.: Growth of testicular neoplasm lung metastases: Tumor-specific relation between two Gompertzian parameters. European Journal of Cancer 16, 1603–1608 (1980)

    Google Scholar 

  10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via EM algorithm. Journal of the Royal Statistical Society Series B 39, 1–38 (1977)

    Google Scholar 

  11. Diggle, P.J., Heagerty, P., Liang, K.Y., Zeger, S.L.: Analysis of Longitudinal Data. Oxford University Press, Oxford, UK, 1994

  12. Dyke, T.V., Jacks, T.: Cancer modeling in the modern era: Progress and challenges. Cell 108, 135–144 (2002)

    Article  PubMed  Google Scholar 

  13. Fearon, E.R., Vogelstein, B.: A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990)

    Article  CAS  PubMed  Google Scholar 

  14. Gatenby, R.A., Gawlinski, E.T.: The glycolytic phenotype in carcinogenesis and tumor invasion: Insights through mathematical models. Cancer Research 63, 3847–3854 (2003)

    Google Scholar 

  15. Gatenby R.A., Maini, P.: Mathematical oncology. Nature 421, 321 (2003)

    Article  Google Scholar 

  16. Gregorczyk, A.: Richards plant growth model. Journal of Agronomy and Crop Science 181, 243–247 (1998)

    Google Scholar 

  17. Guiota, C., Degiorgisb, P.G. Delsantob, P.P. Gabrieled, P., Deisboecke, T.S.: Does tumor growth follow a “universal law”?. Journal of theoretical Biology 225, 147–151 (2003)

    Article  Google Scholar 

  18. Hart, D., Shochat, E., Agur, Z.: The growth law of primary breast cancer as inferred from mammography screening trials data. British Journal of Cancers bf 78, 382–387 (1998)

    Google Scholar 

  19. Hoque, M.O., Lee, C.C.R., Cairns, P. Schoenberg, M., Sidransky, D.: Genome-wide genetic characterization of bladder cancer: A comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis. Cancer Research 63, 2216–2222 (2003)

    Google Scholar 

  20. Kirkpatrick, M., Heckman, N.: A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. Journal of Mathematical Biology 27, 429–450 (1989)

    Article  MATH  Google Scholar 

  21. Lander, E.S., Botstein, D.: Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989)

    CAS  PubMed  Google Scholar 

  22. Lou, X.-Y., Casella, G., Littell, R.C., Yang, M.K.C., Wu, R. L.: A haplotype-based algorithm for multilocus linkage disequilibrium mapping of quantitative trait loci with epistasis in natural populations. Genetics 163, 1533–1548 (2003)

    Google Scholar 

  23. Lynch, M., Walsh, B.: Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland, MA, 1998

  24. Ma, C.-X., Casella, G., Wu, R.L.: Functional mapping of quantitative trait loci underlying the character process: A theoretical framework. Genetics 161, 1751–1762 (2002)

    Google Scholar 

  25. Norton, L.: A Gompertzian model of human breast cancer growth. Cancer Research. 48, 7067–7071 (1988)

    Google Scholar 

  26. Norton, L., Simon, R., Brereton, H.D., Bodgen, A.E.: Predicting the course of Gompertzian growth. Nature 264, 542–545 (1976)

    Google Scholar 

  27. Pletcher, S.D., Geyer, C.J.: The genetic analysis of age-dependent traits: Modeling the character process. Genetics 153, 825–835 (1999)

    Google Scholar 

  28. Pletcher, S.D., Jaffrezic, F.: Generalized character process models: Estimating the genetic basis of traits that cannot be observed and that change with age or environmental conditions. Biometrics 58, 157–162 (2002)

    Article  MathSciNet  Google Scholar 

  29. Potter, C.J., Pedraza, L.G., Xu, T.: Akt regulates growth by directly phosphorylating Tsc2. Nature Cell Biology 4, 658–665 (2002)

    Article  Google Scholar 

  30. Rasnick, D., Duesberg, P.H.: How aneuploidy affects metabolic control and causes cancer. Biochemical Journal 340, 621–630 (1999)

    Article  Google Scholar 

  31. Richards, F.J.: A flexible growth function for empirical use. Journal of Experimental Botany 10, 290–300 (1959)

    Google Scholar 

  32. Wall, J.D., Prichard, J.K.: Haplotype blocks and linkage disequilibrium in the human genome. Nature Reviews Genetics 4, 587–597 (2003)

    Article  Google Scholar 

  33. West, G.B., Brown, J.H., Enquist, B.J.: The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 284, 677–1679 (1999)

    Article  Google Scholar 

  34. West, G.B., Brown, J.H., Enquist, B.J.: A general model for ontogenetic growth. Nature 413, 628–631 (2001)

    Article  Google Scholar 

  35. Wu, R.L., Casella, G.: Statistical Genomics of Complex Traits: A Quantitative Trait Loci Perspective. New York: Springer, 2005

  36. Wu, R.L., Ma, C.-X., Chang, M., Littell, R.C., Wu, S.S., Yin, T.M., Huang, M.R., Wang, M.X., Casella, G.: A logistic mixture model for characterizing genetic determinants causing differentiation in growth trajectories. Genetical Research 19, 235–245 (2002)

    Article  MATH  Google Scholar 

  37. Wu, R.L., Ma C.X., Yang, M.C.K., Chang, M., Santra, U., Wu, S.S., Huang, M., Wang, M., Casella, G.: Quantitative trait loci for growth in Populus. Genetical Research 81, 51–64 (2003)

    Article  Google Scholar 

  38. Wu, R.L., Ma, C.X., Lin, M., Wang, Z.H., Casella, G.: Functional mapping of quantitative trait loci underlying growth trajectories using a transform-both-sides logistic model. Biometrics 60, 528–534 (2004)

    Article  Google Scholar 

  39. Zang, E.A., Wynder, E.L.: Differences in lung cancer risk between men and women: examination of the evidence. Journal of National Cancer Institute 88, 183–192 (1996)

    Google Scholar 

  40. Żelawski, W., Lech, A.: Logistic growth functions and their applicability for characterizing dry matter accumulation in plants. Acta Physiologica Planta 2, 187–194 (1980)

    Google Scholar 

  41. Zhao, W., Wu, R.L., Ma, C.-X., Casella, G.: A fast algorithm for functional mapping of complex traits. Genetics 167, 2133–2137 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongling Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Zhao, W., Tian, L. et al. An algorithm for molecular dissection of tumor progression. J. Math. Biol. 50, 336–354 (2005). https://doi.org/10.1007/s00285-004-0297-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0297-z

Key words or phrases:

Navigation