Skip to main content
Log in

Thresholds for macroparasite infections

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

We analyse here the equilibria of an infinite system of partial differential equations modelling the dynamics of a population infected by macroparasites. We find that it is possible to define a reproduction number R0 that satisfies the intuitive definition, and yields a sharp threshold in the behaviour of the system: if R0 < 1, the parasite-free equilibrium (PFE) is asymptotically stable and there are no endemic equilibria; if R0 > 1, the PFE is unstable and there exists a unique endemic equilibrium. The results mainly confirm what had been obtained in simplified models, except for the fact that no backward bifurcation occurs in this model. The stability of equilibria is established by extending an abstract linearization principle and by analysing the spectra of appropriate operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R.M., May, R.M.: Regulation and stability of host-parasite populations interactions 1-2. J. Animal Ecology 47, 219–247, 249–267 (1978)

    Google Scholar 

  2. Bailey, N.T.J.: The elements of stochastic processes with applications to the natural sciences. Reprint of the 1964 original. Wiley, New York, 1990

  3. Butzer, P.L., Berens, H.: Semigroups of operators and approximation. Grund. d. math. Wiss., 145, Springer-Verlag, Berlin-Heidelberg-New York, 1967

  4. Desch, W., Schappacher, W.: On relatively bounded perturbations of linear C0-semigroups. Ann. Scuola Norm. Sup. Pisa 11, 327–341 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Desch, W., Schappacher, W.: Linearized stability for nonlinear semigroups. In: Differential equations in Banach spaces (Bologna, 1985), A. Favini, E. Obrecht, (eds.), Lecture Notes in Math., 1223, Springer, Berlin-New York, 1986, pp. 61–73

  6. Desch, W., Schappacher, W.: A note on the comparison of C0-semigroups. Semigroup Forum 35, 227–234 (1987)

    Google Scholar 

  7. Desch, W., Schappacher, W.: Some generation results for perturbed semigroups. In: Semigroup theory and applications (Trieste, 1987), P. Clément, S. Invernizzi, E. Mitidieri, I.I. Vrabie, (eds.), Lecture Notes in Pure and Appl. Math., 116 Dekker, New York, 1989, pp. 125–152

  8. Desch, W., Schappacher, W., Zhang, K.P.: Semilinear evolution equations. Houston J. Math. 15, 527–552 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    MATH  Google Scholar 

  10. Diekmann, O., Kretzschmar, M.: Patterns in the effects of infectious diseases on population growth. J. Math. Biol. 29, 539–570 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Engel, K., Nagel, R.: One-parameter semigroups for linear evolution equations. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000

  12. Hadeler, K.P., Dietz, K.: Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations. Hyperbolic partial differential equations. Comput. Math. Appl. 9 (3), 415–430 (1983)

    MATH  Google Scholar 

  13. Hadeler, K.P., Dietz, K.: Population dynamics of killing parasites which reproduce in the host. J. Math. Biol. 21, 45–65 (1984)

    MathSciNet  MATH  Google Scholar 

  14. Hudson, P.J., Rizzoli, A., Grenfell, B.T., Heesterbeek, H., Dobson, A.P. (eds), Ecology of Wildlife Diseases, Oxford University Press, Oxford, 2002

  15. Iannelli, M.: Mathematical theory of age-structured population dynamics. Applied Math. Monographs del CNR, 7, Giardini Ed., Pisa, 1995

  16. Isham, V.: Stochastic models of host-macroparasite interaction. Ann. Appl. Probab. 5, 720–740 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Kostizin, V.A.: Symbiose, parasitisme et évolution (étude mathématique). Hermann, Paris, (1934). Translated in The Golden Age of Theoretical Ecology, F. Scudo and J. Ziegler (eds), Lecture Notes in Biomathematics, Vol. 22, Springer-Verlag, Berlin, 1978, pp. 369–408

  18. Kretzschmar, M.: A renewal equation with a birth-death process as a model for parasitic infections. J. Math. Biol. 27, 191–221 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Kretzschmar, M.: Comparison of an infinite dimensional model for parasitic diseases with a related 2-dimensional system. J. Math. Anal. Appl. 176, 235–260 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kretzschmar, M., Adler, F.R.: Aggregated distributions in models for patchy populations. Theoret. Pop. Biol. 43, 1–30 (1993)

    Article  MATH  Google Scholar 

  21. Pugliese, A.: Coexistence of macroparasites without direct interactions. Theor. Pop. Biol. 57, 145–165 (2000)

    Article  MATH  Google Scholar 

  22. Pugliese, A., Rosà, R.: A 2-dimensional model for macroparasitic infections in a host with logistic growth, J. Biol. Syst. 3, 833–849 (1995)

    Google Scholar 

  23. Pugliese, A., Rosà, R., Damaggio, M.L.: Analysis of a model for macroparasitic infection with variable aggregation and clumped infections. J. Math. Biol. 36, 419–447 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pugliese, A., Tonetto, L.: Well-posedness of an infinite system of partial differential equations modelling parasitic infection in an age-structured host. J. Math. Anal. Appl. 284, 144–164 (2003)

    Article  MATH  Google Scholar 

  25. Roberts, M.G., Grenfell, B.T.: Mathematical models for macroparasites of wildlife. In: Ecology of Infectious Diseases in Natural Populations, B.T. Grenfell and A.P. Dobson (eds), Cambridge Univ. Press 1995, pp. 178–208

  26. Rosà, R., Pugliese, A.: Aggregation, stability and oscillations in different models for host-macroparasite interactions, Theor. Pop. Biol. 61, 319–334 (2002)

    Article  Google Scholar 

  27. Webb, G.F.: Theory of nonlinear age-dependent population dynamics. Pure and applied Mathematics, Marcel Dekker, New York-Basel, 1985

  28. Webb, G.F.: A semigroup proof of the Sharpe-Lotka theorem. In: Infinite-dimensional systems, F. Kappel and W. Schappacher (eds), Lecture Notes in Mathematics, Vol. 1076 Springer-Verlag, Berlin, 1984, pp. 254–268

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenza Tonetto.

Additional information

Revised version: 14 November 2003

Supported in part by CNR under Grant n. 00.0142.ST74 “Metodi e modelli matematici nello studio dei fenomeni biologici”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugliese, A., Tonetto, L. Thresholds for macroparasite infections. J. Math. Biol. 49, 83–110 (2004). https://doi.org/10.1007/s00285-004-0266-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0266-6

Navigation