Skip to main content
Log in

Structural identifiability analysis of some highly structured families of statespace models using differential algebra

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

In this paper we identify biologically relevant families of models whose structural identifiability analysis could not be performed with available techniques directly. The models considered come from both the immunological and epidemiological literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bittner, B., Wahl, L. M.: Immune responses against conserved and variable viral epitopes. Journal of Theoretical Medicine 3, 37–49 (2000)

    MATH  Google Scholar 

  2. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the Radical of a Finitely Generated Differential Ideal. ISSAC 1995, pp. 158–166

  3. Cane, P. A.: Molecular epidemiology of respiratory syncytial virus. Reviews in Medical Virology 11, 103–116 (2001)

    Article  Google Scholar 

  4. Char, B., Geddes, K., Gonnet, G., Leong, B., Monogan, M.: MAPLE V Library Reference Manual. Springer-Verlag, New York, 1991

  5. D’Angió, L., Saccomani, M.P., Audoly, S., Bellu, G., Cobelli, C.: A new algorithm to test global identifiability of physiological nonlinear models. In The Third IFAC Symposium, University of Warwick, U.K., 23–26 March 1997

  6. Diop, S., Fliess, M.: On nonlinear observability. In ECC 91 European Control Conference Grenoble, France, July 2–5 1991, pp. 152–157

  7. Döpfer, D.: Recurrent clinical Escherichia coli mastitis in diary cows. PhD thesis, Institute of Infectious Diseases and Immunology, Department of Bacteriology, Faculty of Veterinary Medicine, Utrecht University, June 2000

  8. Döpfer, D., White, L.J., Schukken, Y. H., Chappell, M. J., Medley, G. F.: A mathematical model for the interaction of escherichia coli and somatic cells during persistent and acute bovine mastitis. Personal communication

  9. Evans, N. D., Chapman, M. J., Chappell, M. J., Godfrey, K. R.: Identifiability of uncontrolled nonlinear rational systems. Automatica 38 (10), 1799–1825 (2002)

    Article  MATH  Google Scholar 

  10. Fliess, M.: Nonlinear control theory and differential algebra. In: Byrnes, I. and Kurzhanski, A. (eds) Modelling and Adaptive Control. Lect. Notes Control Inform. Sci., pp. 134–145 (1988)

  11. Fliess, M., Glad, S. T.: An algebraic approach to linear and nonlinear control. In: Trentelman, H. L. and Willems, J. C. (ed) Essays on Control: Perspectives in the Theory and its Applications, volume 14 of Progress in Systems and Control Theory, Birkhäuser, pp. 223–267, Boston, 1993

  12. Gomes, M. G. M., Medley, G. F.: Dynamics of multiple strains of infectious agents coupled by cross-immunity: a comparison of models. In: Carlos Castillo-Chavez with Sally Blower, Pauline van den Driessche, Denise Kirschner, and Abdul-Aziz Yakubu, (eds) Mathematical Approaches for Emerging and Reemerging Infectious Diseases Part II: Models, Methods and Theory, volume 126 of IMA Volumes in Mathematics and its Applications, Springer-Verlag, pp. 171–192, New York, 2001

  13. Gupta, S., Ferguson, and R. M. Anderson. Chaos, persistence and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912–915 (1998)

  14. Hubert, E.: Factorization-free decomposition algorithms in differential algebra. Journal of Symbolic Computation 29, 641–662 (2000)

    Article  MATH  Google Scholar 

  15. Kaplansky, I.: An Introduction to Differential Algebra. Hermann, Paris, 1957

  16. Kolchin, E. R.: Differential Algebra and Algebraic Groups. Academic Press, New York, 1973

  17. Lam, T. J. G. M.: Dynamics of Bovine Mastitis a Field Study in Low Somatic Cell Counts. PhD thesis, Faculteit Diergeneeskunde. Utrecht: Universiteit Utrecht, 1996

  18. Ljung, L., Glad, S. T.: On global identifiability for arbitrary model parametrizations. Automatica 30, 265–276 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Margaria, G.: Applications of Differential Algebra to the Structural Identifiability of Non Linear Models. PhD thesis, Department of Mathematics, Politecnico di Torino, 2000

  20. Margaria, G., Riccomagno, E., Chappell, M. J., Wynn, H. P.: Differential algebra methods for the study of the structural identifiability of rational polynomial state-space models in the biosciences. Mathematical Biosciences 174 (1), 1–26 (2001)

    Article  MATH  Google Scholar 

  21. Ollivier, F.: Le problème de l’Identifiabilité Structurelle Globale: Approche Théorique, Méthodes Effectives et bornes de Complexité. PhD thesis, GAGE, Centre de Mathématiques, École Polytechnique, 1990

  22. Ollivier, F.: Identifiabilité des systémes. Technical report, GAGE, Centre de Mathématiques, École Polytechnique, 1998

  23. Pohjanpalo, H.: System identifiability based on the power series expansion of the solution. Mathematical Biosciences 41, 21–33 (1978)

    Article  MATH  Google Scholar 

  24. Ritt, J. F.: Differential Algebra. American Mathematical Society, New York, 1950

  25. Sadik, B.: A bound for the order of characteristic set elements of an ordinary prime differential ideal and some application. Applicable algebra in Engineering Communication and Computing. 10, 251–268 (2000)

    Article  MATH  Google Scholar 

  26. Sedoglavic, A.: A probabilistic algorithm to test local algebraic observability in polynomial time. In Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, Canada, July 22–25 (2001)

  27. Sedoglavic, A.: A probabilistic algorithm to test local algebraic observability in polynomial time. Journal of Symbolic Computation 33, 735–755 (2002)

    Article  MATH  Google Scholar 

  28. van den Hof, J. M.: Structural identifiability of linear compartmental systems. IEEE Transaction on Automatic Control. 43 (6), 800–818 (1998)

    MATH  Google Scholar 

  29. Wahl, L. M., Bittner, B., Nowak, M. A.: Immunological transitions in response to antigenic mutation during viral infection. Int. Immunology 12 (10), 1371–1380 (2000)

    Article  Google Scholar 

  30. Wang, D.: An implementation of the characteristic set method in Maple. In: Wang, D. and Pfalzgraf, J. (eds) Automated practical reasoning: algebraic approches, pp. 187–201, Springer-Verlag, 1995

  31. White, L. J., Cox, M. J., Medley, G. F.: Cross immunity and vaccination against multiple microparasite strains. IMA J. of Math. App. Med. Biol. 15, 211–233 (1998)

    MATH  Google Scholar 

  32. White, L. J., Evans, N. D., Lam, T. J. G. M., Schukken, Y. H., Medley, G. F., Godfrey, K. R., Chappell, M. J.: The structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in dairy cows. Mathematical Biosciences. 174 (2), 77–90 (2001)

    Article  MATH  Google Scholar 

  33. White, L. J., Schukken, Y. H., Lam, T. J. G. M., Medley, G. F., Chappell, M. J.: A multispecies model for the transmission and control of mastitis in diary cows. Epidemiology and Infection 127, 567–576 (2001)

    Google Scholar 

Download references

Acknowledgments.

The authors would like to thank Doctors Barbara Bittner and Gabriella Gomes for providing them with their models and for fruitful discussions. The second author would like to thank Professor Giovanni Pistone, Politecnico di Torino, who hosted her during the research for the present paper (a project funded by MURST ‘‘Ricerca di Base’’, 2001). Two unknown referees are acknowledged for most valuable comments. The authors would like to thank Prof. Saul Jacka for his help in editing the final version of this paper. To the authors alone, however, belongs the responsability for the text.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margaria, G., Riccomagno, E. & White, L. Structural identifiability analysis of some highly structured families of statespace models using differential algebra. J. Math. Biol. 49, 433–454 (2004). https://doi.org/10.1007/s00285-003-0261-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-003-0261-3

Keywords or phrases:

Navigation