Skip to main content

Advertisement

Log in

Macrophage response to Mycobacteriumtuberculosis infection

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The immune response to Mycobacteriumtuberculosis (Mtb) infection is the formation of multicellular lesions, or granolomas, in the lung of the individual. However, the structure of the granulomas and the spatial distribution of the immune cells within is not well understood. In this paper we develop a mathematical model investigating the early and initial immune response to Mtb. The model consists of coupled reaction-diffusion-advection partial differential equations governing the dynamics of the relevant macrophage and bacteria populations and a bacteria-produced chemokine. Our novel application of mathematical concepts of internal states and internal velocity allows us to begin to study this unique immunological structure. Volume changes resulting from proliferation and death terms generate a velocity field by which all cells are transported within the forming granuloma. We present numerical results for two distinct infection outcomes: controlled and uncontrolled granuloma growth. Using a simplified model we are able to analytically determine conditions under which the bacteria population decreases, representing early clearance of infection, or grows, representing the initial stages of granuloma formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloom, B.R.: Tuberculosis: pathogenesis, protection, and control. ASM Press, Washington, DC, 1994

  2. Chiu, C., Hoppensteadt, F.C.: Mathematical models and simulations of bacterial growth and chemotaxis in a diffusion gradient chamber. J. Math. Biol. 42, 120–144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Collins, H.L., Kaufmann, S.H.E.: The many faces of host responses to tuberculosis. Immunol. 103, 1–9 (2001)

    Article  MATH  Google Scholar 

  4. Comstock, G.W., Livesay, V.T., Woolpert, S.F.: The prognosis of a positive tuberculin reaction in childhood and adolescence. Am. J. Epidemiol. 99, 131–138 (1974)

    Google Scholar 

  5. Dannenberg, A.M., Rook, G.S.W.: Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses - dual mechanisms that control bacillary multiplication. In: Bloom,~B.R., (ed) Tuberculosis: pathogenesis, protection, and control. ASM Press, Washington, DC, 1994

  6. DesJardin, L.E., Kaufman, T.M., Potts, B., Kutzbach, B., Yi, H., Schlesinger, L.S.: Mycobacterium tuberculosis-infected human macrophages exhibit enhanced cellular adhesion with increased expression of LFA-1 and ICAM-1 and reduced expression and/or function of complement receptors, FcγRii and the mannose receptor. Microbiol. 148, 3161–3171 (2002)

    Google Scholar 

  7. Emile, J.-.F, Patey, N., Altare, F., Lamhamedi, S., Jouanguy, E., Boman, F., Quillard, J., Lecomte-Houcke, M., Verola, O., Mousnier, J.-F., Dijoud, F., Blanche, S., Fischer, A., Brousse, N., Casanova, J.-L.: Correlation of granuloma structure with clinical outcome defines two types of idiopathic disseminated BCG infection. J. Pathology 181, 25–30 (1997)

    Article  Google Scholar 

  8. Flesch, I.E., Kaufmann, S.H.: Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect. Immun. 58, 2675–2677 (1990)

    Google Scholar 

  9. Flynn, J.L., Chan, J.: Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001)

    Article  Google Scholar 

  10. Flynn, J.L., Chan, J.: Tuberculosis: latency and reactivation. Infect. Immun. 69, 4195–4201 (2001)

    Article  Google Scholar 

  11. Höfer, T., Sherratt, J.A., Maini, P.K.: Cellular pattern formation during Dictyostelium aggregation. Phy. D 85, 425–444 (1995)

    Google Scholar 

  12. Jackson, T.L., Byrne, H.M.: A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci. 164, 17–38 (2000)

    Article  MATH  Google Scholar 

  13. Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.: Immuno biology. Garland, New York, 1994

  14. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. theor. Biol. 30, 225–234 (1971)

    Google Scholar 

  15. Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. theor. Biol. 30, 235–248 (1971)

    Google Scholar 

  16. Kirschner, D., Perelson, A.: A model for the immune system response to HIV: AZT treatment studies. In: Axelrod, A.O., Kimmel, D., and Langlais, M., (eds) Mathematical Population Dynamics: Analysis of Hetergeneity and Theory of Epidemics, Wuerz Publishing, p. 295–310 (1995)

  17. Lauffenburger, D.A., Linderman, J.J.: Receptors: models for binding, trafficking, and signaling. Oxford University Press, New York, 1993

  18. Lev Bar Or, R.: Feedback mechanisms between T helper cells and macrophages in the determination of the immune response. Math. Biosci. 163, 35–58 (2000)

    Article  MATH  Google Scholar 

  19. Lin, Y., Zhang, M., Barnes, P.F.: Chemokine production by a human alveola epithelial cell line in response to mycobacterium tuberculosis. Infect. Immun. 66, 1121–1126 (1998)

    Google Scholar 

  20. Mayanja-Kizza, H., Johnson, J.L., Hirsch, C.S., Peters, P., Surewicz, K., Wu, M., Nalugwa, G., Mubiru, F., Luzze, H., Wajja, A., Aung, H., Ellner, J.J., Whalen, C., Toossi, Z.: Macrophage-activating cytokines in human immunodeficiency virus type 1-infected and -uninfected patients with pulmonary tuberculosis. J. Infect. Dis. 183, 1805–1809 (2001)

    Article  Google Scholar 

  21. Mims, C., Dimmock, N., Nash, A., Stephen, J.: Mims’ Pathogenesis of Infectious Disease. Academic Press, New York, 1995

  22. Myerscough, M.R., Maini, P.K., Painter, K.J.: Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60, 1–26 (1998)

    Article  MATH  Google Scholar 

  23. NAG Ltd.: NAG Fortran Library Manual, Mark 19 edition, 1999

  24. Nathan, C.F., Murray, H.W., Wiebe, M.E., Rubin, B.Y.: Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 158, 670–689 (1983)

    Google Scholar 

  25. Owen, M.R., Sherratt, J.A.: Pattern formation and spatiotemporal irregularity in a model for macrophage-tumour interactions. J. theor. Biol. 189, 63–80 (1997)

    Article  Google Scholar 

  26. Owen, M.R., Sherratt, J.A.: Mathematical modelling of macrophage dynamics in tumours. Math. Models Methods Appl. Sci. 9, 513–539 (1999)

    Article  MATH  Google Scholar 

  27. Painter, K.J., Maini, P.K., Othmer, H.G.: Development and applications of a model for cellular respose to multiple chemotactic cues. J. Math. Biol. 41, 285–314 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pan, Z.K., Chen, L.-Y., Cochrane, C.G., Zuraw, B.L.: fMet-Leu-Phe stimulates proinflammatory cytokine gene expression in human peripheral blood monocytes: the role of phosphatidylinositol 3-kinase. J. Immunol. 164, 404–411 (2000)

    Google Scholar 

  29. Pilyugin, S.S.: Modeling immune responses with handling time. Bull. Math. Biol. 62, 869–890 (2000)

    Article  Google Scholar 

  30. Sannomiya, P., Craig, R.A., Clewell, D.B., Suzuki, A., Fujino, M., Till, G.O., Marasco, W.A.: Characterization of a class of nonformylated enterococcus faecalis-derived neutrophil chemotactic peptides: the sex pheromones. Proc. Natl. Acad. Sci. USA 87, 66–70 (1990)

    Google Scholar 

  31. Saukkonen, J.J., Bazydlo, B., Thomas, M., Strieter, R.M., Keane, J., Kornfeld, H.: β-chemokines are induced by mycobacterium tuberculosis and inhibit its growth. Infect. Immun. 70, 1684–1693 (2002)

    Article  Google Scholar 

  32. Schluger, N.W., Rom, W.N.: The host immune response to tuberculosis. Am. J. Respir. Crit. Care Med. 157, 679–691 (1998)

    Google Scholar 

  33. Sherratt, J.A.: Chemotaxis and chemokinesis in eukaryotic cells: The Keller-Segel equations as an approxination to a detailed model. Bull. Math. Biol. 56, 129–146 (1994)

    MATH  Google Scholar 

  34. Sherratt, J.A., Sage, E.H., Murray, J.D.: Chemical control of eukaryotic cell movement: A new model. J. theor. Biol. 162, 23–40 (1993)

    Article  Google Scholar 

  35. Sozzani, S., Luini, W., Molino, M., Jílek, P., Bottazzi, B., Cerletti, C., Matsushima, K., Mantovani, A.: The signal transduction pathway involved in the migration induced by a monocyte chemotactic cytokine. J. Immunol. 147, 2215–2221 (1991)

    Google Scholar 

  36. Stout, R.D., Bottomly, K.: Antigen-specific activation of effector macrophages by IFN-gamma producing (TH1) t cell clones. failure of IL-4-producing (TH2) t cell clones to activate effector function in macrophages. J. Immunol. 142, 760–765 (1989)

    Google Scholar 

  37. Tran, C.L., Jones,~A.D., Donaldson, K.: Mathematical model of phagocytosis and inflammation after the inhalation of quartz at different concentrations. Scand. J. Work Environ. Health 21, 50–54 (1995)

    Google Scholar 

  38. van Crevel, R., Ottenhoff, T.H.M., van der Meer, J.W.M.: Innate immunity to mycobacterium tuberculosis. Clin. Microbiol. Rev. 15, 294–309 (2002)

    Article  Google Scholar 

  39. Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol. 14, 39–69 (1997)

    Google Scholar 

  40. Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth ii: Modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16, 171–211 (1999)

    MATH  Google Scholar 

  41. WHO.: WHO Report 2001: Global Tuberculosis Control. Technical report, World Health Organization, 2001

  42. Wigginton, J.E., Kirschner, D.: A model to predict cell-mediated immune regulatory mechanisms during human infection with mycobacterium tuberculosis. J. Immunol. 166, 1951–1967 (2001)

    Google Scholar 

  43. Wodarz, D., Lloyd, A.L., Jansen, V.A.A., Nowak, M.A.: Dynamics of macrophage and T cell infection by HIV. J. theor. Biol. 196, 101–113 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Send offprint requests to:kirschne@umich.edu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gammack, D., Doering, C. & Kirschner, D. Macrophage response to Mycobacteriumtuberculosis infection. J. Math. Biol. 48, 218–242 (2004). https://doi.org/10.1007/s00285-003-0232-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-003-0232-8

Key words or phrases

Navigation