Skip to main content
Log in

Repurposing Polyether Ionophores as a New-Class of Anti-SARS-Cov-2 Agents as Adjunct Therapy

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The emergence of SARS-CoV-2 and its variants have posed a significant threat to humankind in tackling the viral spread. Furthermore, currently repurposed drugs and frontline antiviral agents have failed to cure severe ongoing infections effectively. This insufficiency has fuelled research for potent and safe therapeutic agents to treat COVID-19. Nonetheless, various vaccine candidates have displayed a differential efficacy and need for repetitive dosing. The FDA-approved polyether ionophore veterinary antibiotic for treating coccidiosis has been repurposed for treating SARS-CoV-2 infection (as shown by both in vitro and in vivo studies) and other deadly human viruses. Based on selectivity index values, ionophores display therapeutic effects at sub-nanomolar concentrations and exhibit selective killing ability. They act on different viral targets (structural and non-structural proteins), host-cell components leading to SARS-CoV-2 inhibition, and their activity is further enhanced by Zn2+ supplementation. This review summarizes the anti-SARS-CoV-2 potential and molecular viral targets of selective ionophores like monensin, salinomycin, maduramicin, CP-80,219, nanchangmycin, narasin, X-206 and valinomycin. Ionophore combinations with Zn2+ are a new therapeutic strategy that warrants further investigation for possible human benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Organization WHO (2022) COVID-19 weekly epidemiological update. Accessed 22 Feb 2022

  2. Mullin S et al (2022) Modeling pandemic to endemic patterns of SARS-CoV-2 transmission using parameters estimated from animal model data. PANS Nexus 1(3):pgac096

    Google Scholar 

  3. Shaman J, Galanti MJS (2020) Will SARS-CoV-2 become endemic? Science 370(6516):527–529

    CAS  PubMed  Google Scholar 

  4. Katzourakis AJN (2022) COVID-19: endemic doesn’t mean harmless. Nature. https://doi.org/10.1038/d41586-022-00155-x

    Article  PubMed  Google Scholar 

  5. Jacobs LG et al (2020) Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLOS One 15(12)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen N et al (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu J et al (2022) Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 variants. New Engl J Med 386(16):1579–1580

    PubMed  Google Scholar 

  8. Perez-Gomez R (2021) The development of SARS-CoV-2 variants: the gene makes the disease. J Dev Biol 9(4):58

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tao K et al (2021) The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet 22(12):757–773

    CAS  PubMed  PubMed Central  Google Scholar 

  10. V’kovski P et al (2021) Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 19(3):155–170

    PubMed  Google Scholar 

  11. Elfiky AA (2021) SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J Biomol Struct Dyn 39(9):3204–3212

    CAS  PubMed  Google Scholar 

  12. van Hemert MJ et al (2008) SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog 4(5):e1000054

    PubMed  PubMed Central  Google Scholar 

  13. Malik YA (2020) Properties of coronavirus and SARS-CoV-2. Malays J Pathol 42(1):3–11

    CAS  PubMed  Google Scholar 

  14. Yadav R et al (2021) Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells 10(4):821

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Drożdżal S et al (2020) FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy. Drug Resist Updat 53

    Google Scholar 

  16. Singh TU et al (2020) Drug repurposing approach to fight COVID-19. Pharmacol Rep 72(6):1479–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J et al (2020) Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 6(1):16

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang M et al (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30(3):269–271

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoffmann M et al (2020) Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature 585(7826):588–590

    CAS  PubMed  Google Scholar 

  20. Geleris J et al (2020) Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med 382(25):2411–2418

    CAS  PubMed  Google Scholar 

  21. Magagnoli J et al (2020) Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. Med 1(1):114

    PubMed  Google Scholar 

  22. Altulea D et al (2021) What makes (hydroxy) chloroquine ineffective against COVID-19: insights from cell biology. J Mol Cell Biol 13(3):175–184

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sisay M (2020) Available evidence and ongoing clinical trials of remdesivir: could it be a promising therapeutic option for COVID-19? Front Pharmacol 11:791

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bakker E, Bühlmann P, Pretsch E (1997) Carrier-based ion-selective electrodes and bulk optodes. 1. general characteristics. Chem Rev 97(8):3083–3132

    CAS  PubMed  Google Scholar 

  25. Westley JJ (1977) Polyether antibiotics: versatile carboxylic acid ionophores produced by Streptomyces. Adv Appl Microbiol 22:177–223

    CAS  PubMed  Google Scholar 

  26. Rajendran V et al (2018) Chemotherapeutic potential of monensin as an anti-microbial agent. Curr Top Med Chem 18(22):1976–1986

    CAS  PubMed  Google Scholar 

  27. Pressman BC (1976) Biological applications of ionophores. Annu Rev Biochem 45(1):501–530

    CAS  PubMed  Google Scholar 

  28. Chapman H, Jeffers T, Williams R (2010) Forty years of monensin for the control of coccidiosis in poultry. Poult Sci 89(9):1788–1801

    CAS  PubMed  Google Scholar 

  29. Gezer E et al (2022) Undescribed polyether ionophores from Streptomyces cacaoi and their antibacterial and antiproliferative activities. Phytochemistry 195

    CAS  PubMed  Google Scholar 

  30. Dutton C, Banks B, Cooper C (1995) Polyether ionophores. Nat Prod Rep 12(2):165–181

    CAS  PubMed  Google Scholar 

  31. Li J-Q et al (2020) Aglycone polyether ionophores as broad-spectrum agents inhibit multiple enveloped viruses including SARS-CoV-2 in vitro and successfully cure JEV infected mice. BioRxiv. https://doi.org/10.1101/2020.10.27.354563

    Article  PubMed  PubMed Central  Google Scholar 

  32. Noack S, Chapman HD, Selzer PM (2019) Anticoccidial drugs of the livestock industry. Parasitol Res 118(7):2009–2026

    PubMed  PubMed Central  Google Scholar 

  33. Lin S et al (2021) Expanding the antibacterial selectivity of polyether ionophore antibiotics through diversity-focused semisynthesis. Nat Chem 13(1):47–55

    CAS  PubMed  Google Scholar 

  34. Antoszczak M, Steverding D, Huczyński A (2019) Anti-parasitic activity of polyether ionophores. Eur J Med Chem 166:32–47

    CAS  PubMed  Google Scholar 

  35. Antoszczak M, Huczyński A (2015) Anticancer activity of polyether ionophore-salinomycin. Anticancer Agents Med Chem 15(5):575–591

    CAS  PubMed  Google Scholar 

  36. Kaushik V et al (2018) Ionophores: potential use as anticancer drugs and chemosensitizers. Cancers 10(10):360

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Boesch M, Sopper S, Wolf D (2016) Ionophore antibiot as cancer stem cell-selective drugs: open questions. Oncologist 21(11):1291–1293

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fong C (2021) Ionophores and inhibition of SARS-CoV-2 ion channels. Eigenenergy Adelaide. South Australia, Australia. hal-03347139v2

  39. Svenningsen EB et al (2021) Ionophore antibiotic X-206 is a potent inhibitor of SARS-CoV-2 infection in vitro. AntiviralRes 185

    CAS  PubMed  Google Scholar 

  40. Russell JB, Houlihan AJ (2003) Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol Rev 27(1):65–74

    CAS  PubMed  Google Scholar 

  41. Aarestrup FM et al (1998) Surveillance of antimicrobial resistance in bacteria isolated from food animals to antimicrobial growth promoters and related therapeutic agents in Denmark. APMIS 106(1–6):606–622

    CAS  PubMed  Google Scholar 

  42. Kim KY et al (2015) Salinomycin enhances doxorubicin-induced cytotoxicity in multidrug resistant MCF-7/MDR human breast cancer cells via decreased efflux of doxorubicin. Mol Med Rep 12(2):1898–1904

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hermawan A, Wagner E, Roidl A (2016) Consecutive salinomycin treatment reduces doxorubicin resistance of breast tumor cells by diminishing drug efflux pump expression and activity. Oncol Rep 35(3):1732–1740

    CAS  PubMed  Google Scholar 

  44. Huczynski A (2012) Polyether ionophores-promising bioactive molecules for cancer therapy. Bioorg Med Chem Lett 22(23):7002–7010

    CAS  PubMed  Google Scholar 

  45. Patel MB et al (2019) Synthetic ionophores as non-resistant antibiotic adjuvants. RSC Adv 9(4):2217–2230

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Magallon J et al (2019) Restoration of susceptibility to amikacin by 8-hydroxyquinoline analogs complexed to zinc. PLoS One 14(5):e0217602

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Goel N et al (2021) New threatening of SARS-CoV-2 coinfection and strategies to fight the current pandemic. Med Drug Discov 10:100089

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Aranjani JM et al (2021) COVID-19–associated mucormycosis: evidence-based critical review of an emerging infection burden during the pandemic’s second wave in India. PLoS Negl Top Dis 15(11):e0009921

    CAS  Google Scholar 

  49. Hoenigl M et al (2022) The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries. Lancet Microbe 3(7):e543–e552

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Feldman C, Anderson R (2021) The role of co-infections and secondary infections in patients with COVID-19. Pneumonia (Nathan) 13(1):5

    PubMed  Google Scholar 

  51. He S et al (2021) Clinical characteristics of COVID-19 patients with clinically diagnosed bacterial co-infection: a multi-center study. PLoS One 16(4):e0249668

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mirzaei R et al (2020) Bacterial co-infections with SARS-CoV-2. IUBMB Life 72(10):2097–2111

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kevin Ii DA, Meujo DA, Haman MT (2009) Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin Drug Discov 4(2):109–146

    PubMed  Google Scholar 

  54. Tartakoff AM (1983) Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell 32(4):1026–1028

    CAS  PubMed  Google Scholar 

  55. Tartakoff A, Vassalli P, Détraz M (1978) Comparative studies of intracellular transport of secretory proteins. J Cell Biol 79(3):694–707

    CAS  PubMed  Google Scholar 

  56. Griffiths G, Quinn P, Warren G (1983) Monensin inhibits the transport of viral membrane proteins from medial to trans golgi cisternae in baby hamster kidney cells infected with Semliki Forest virus. J Cell Biol 96:835–850

    CAS  PubMed  Google Scholar 

  57. Tartakoff AM (1983) [5] perturbation of the structure and function of the golgi complex by monovalent carboxylic ionophores. Methods Enzymol 98:47–59

    CAS  PubMed  Google Scholar 

  58. Alonso-Caplen FV et al (1984) Replication and morphogenesis of avian coronavirus in Vero cells and their inhibition by monensin. Virus Resp 1(2):153–167

    CAS  Google Scholar 

  59. Niemann H et al (1982) Post-translational glycosylation of coronavirus glycoprotein E1: inhibition by monensin. EMBO J 1(12):1499–1504

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ju X et al (2021) A novel cell culture system modeling the SARS-CoV-2 life cycle. PLoS Pathog 17(3):e1009439

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Xiao X et al (2020) Identification of potent and safe antiviral therapeutic candidates against SARS-CoV-2. Front Immunol 11:586572

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Verma AK, Aggarwal R (2021) Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chem Biol Drug Des 97(4):836–853

    CAS  PubMed  Google Scholar 

  63. Braga L et al (2021) Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature 594(7861):88–93

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Xing J et al (2021) Published anti-SARS-CoV-2 in vitro hits share common mechanisms of action that synergize with antivirals. Brief Bioinform 22(6):bbab249

    PubMed  PubMed Central  Google Scholar 

  65. Shen L et al (2019) High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J Virol 93(12):e00023–e00019

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Miyazaki Y et al (1974) Salinomycin, a new polyether antibiotic. J Antibiot 27(11):814–821

    CAS  Google Scholar 

  67. Jeon S et al (2020) Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother 64(7):e00819–e00820

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang C-W et al (2020) Repurposing old drugs as antiviral agents for coronaviruses. Biomed J 43(4):368–374

    PubMed  PubMed Central  Google Scholar 

  69. Dittmar M et al (2021) Drug repurposing screens reveal cell-type-specific entry pathways and FDA-approved drugs active against SARS-Cov-2. Cell Rep 35(1):108959

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Peng H et al (2021) Discovery of potential anti-SARS-CoV-2 drugs based on large-scale screening in vitro and effect evaluation in vivo. Sci China Life Sci. https://doi.org/10.1007/s11427-021-2031-7

    Article  PubMed  PubMed Central  Google Scholar 

  71. Plante JA et al (2021) Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592(7852):116–121

    CAS  PubMed  Google Scholar 

  72. Ke Y et al (2020) Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed J. https://doi.org/10.1016/j.bj.2020.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pindiprolu SKS et al (2020) Pulmonary delivery of nanostructured lipid carriers for effective repurposing of salinomycin as an antiviral agent. Med Hypotheses 143:109858

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharma N et al (2005) Toxicity of maduramicin. Emerg Med J 22(12):880–882

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dirlam JP, Presseau-Linabury L, Koss DA (1990) The structure of CP-80, 219, a new polyether antibiotic related to dianemycin. J Antibiot 43(6):727–730

    CAS  Google Scholar 

  76. Antoszczak M et al (2014) Structure and biological activity of polyether ionophores and their semisynthetic derivatives.107–170. https://doi.org/10.1002/9783527684403.CH6

  77. Yu Q et al (2012) The biosynthesis of the polyether antibiotic nanchangmycin is controlled by two pathway-specific transcriptional activators. Arch Microbiol 194(6):415–426

    CAS  PubMed  Google Scholar 

  78. Sarute N et al (2021) Signal-regulatory protein alpha is an anti-viral entry factor targeting viruses using endocytic pathways. PLoS Pathog 17(6):e1009662

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rana S et al (2021) Identification of naturally occurring antiviral molecules for SARS-CoV-2 mitigation. Open COVID J 1:1

    Google Scholar 

  80. Patten JJ et al (2022) Identification of druggable host targets needed for SARS-CoV-2 infection by combined pharmacological evaluation and cellular network directed prioritization both in vitro and in vivo. BioRxiv. https://doi.org/10.1101/2022.04.20.440626

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kroteń MA, Bartoszewicz M, Święcicka I (2010) Cereulide and valinomycin, two important natural dodecadepsipeptides with ionophoretic activities. PolJ Microbiol 59(1):3

    PubMed  Google Scholar 

  82. Fong C, Design D (2016) Physiology of ionophore transport of potassium and sodium ions across cell membranes: Valinomycin and 18-Crown-6 Ether. Int J Comput Biol Drug Des 9(3):228–246

    Google Scholar 

  83. Wu C-Y et al (2004) Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci USA 101(27):10012–10017

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gassen NC et al (2021) SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun 12(1):1–15

    Google Scholar 

  85. Rahman MT, Idid SZ (2021) Can Zn be a critical element in COVID-19 treatment? Biol Trace Elem Res 199(2):550–558

    PubMed  Google Scholar 

  86. Roohani N et al (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18(2):144–157

    PubMed  PubMed Central  Google Scholar 

  87. Wessels I, Rolles B, Rink L (2020) The potential impact of zinc supplementation on COVID-19 pathogenesis. Front Immunol. https://doi.org/10.3389/fimmu.2020.01712

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vogel-González M, Talló-Parra M, Herrera-Fernández V, Pérez-Vilaró G, Chillón M, Nogués X, Gómez-Zorrilla S, López-Montesinos I, Arnau-Barrés I, Sorli-Redó M (2021) Lowzinc levels at admission associates with poor clinical outcomes in SARS-CoV-2infection. Nutrients 13:562

    PubMed  PubMed Central  Google Scholar 

  89. Dubourg G et al (2021) Low blood zinc concentrations in patients with poor clinical outcome during SARS-CoV-2 infection: is there a need to supplement with zinc COVID-19 patients? Microbiol Immunol Infect 54(5):997–1000

    CAS  Google Scholar 

  90. Derwand R, Scholz M (2020) Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today’s battle against COVID-19? Med Hypotheses 142:109815

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cingolani V (2021) Hypothesis of zinc ascorbate as best zinc ionophore for raising antiviral resistance against Covid-19. J Med Virol. https://doi.org/10.1002/jmv.26989

    Article  PubMed  PubMed Central  Google Scholar 

  92. AliáKhan W et al (2021) Zinc 2+ ion inhibits SARS-CoV-2 main protease and viral replication in vitro. Chem Commun (Camb) 57(78):10083–10086

    Google Scholar 

  93. Tao X et al (2022) Inhibition of SARS-CoV-2 replication by zinc gluconate in combination with hinokitiol. J Inorg Biochem 231:111777

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Te Velthuis AJ et al (2010) Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 6(11):e1001176

    Google Scholar 

  95. Kladnik J et al (2022) Zinc pyrithione is a potent inhibitor of PLPro and cathepsin L enzymes with ex vivo inhibition of SARS-CoV-2 entry and replication. J Enzyme Inhib Med Chem 37(1):2158–2168

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Carlucci PM et al (2020) Zinc sulfate in combination with a zinc ionophore may improve outcomes in hospitalized COVID-19 patients. J Med Microbiol 69(10):1228–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu H et al (2009) Clioquinol targets zinc to lysosomes in human cancer cells. Biochem J 417(1):133–139

    CAS  PubMed  Google Scholar 

  98. Chen X, Geiger JD (2020) Janus sword actions of chloroquine and hydroxychloroquine against COVID-19. Cell Signal 73:109706

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Xue J et al (2014) Chloroquine is a zinc ionophore. PLoS One 9(10):e109180

    PubMed  PubMed Central  Google Scholar 

  100. García CC, Damonte EB (2007) Zn finger containing proteins as targets for the control of viral infections. Infect Disord Drug Targets 7(3):204–212

    PubMed  Google Scholar 

  101. Esposito S et al (2022) Host and viral zinc-finger proteins in COVID-19. Int J Mol Sci 23(7):3711

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Armstrong LA et al (2021) Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies. PLoS One 16(7):e0253364

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sargsyan K et al (2020) Multi-targeting of functional cysteines in multiple conserved SARS-CoV-2 domains by clinically safe Zn-ejectors. Chem Sci 11(36):9904–9909

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Doboszewska U et al (2020) Targeting zinc metalloenzymes in coronavirus disease 2019. BrJ pharmacol 177(21):4887–4898

    CAS  Google Scholar 

  105. Ma Y et al (2015) Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex. Proc Natl Acad Sci USA 112(30):9436–9441

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lin M-H et al (2018) Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res 150:155–163

    CAS  PubMed  Google Scholar 

  107. Ianevski A et al (2020) Potential antiviral options against SARS-CoV-2 infection. Viruses 12(6):642

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kreiser T et al (2022) Inhibition of respiratory RNA viruses by a composition of ionophoric polyphenols with metal ions. Pharmaceuticals (Basel) 15(3):377

    CAS  PubMed  Google Scholar 

  109. Dabbagh-Bazarbachi H et al (2014) Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1–6 cells to a liposome model. J Agric Food Chem 62(32):8085–8093

    CAS  PubMed  Google Scholar 

  110. D’Alessandro S et al (2015) Salinomycin and other ionophores as a new class of antimalarial drugs with transmission-blocking activity. Antimicrob Agents Chemother 59(9):5135–5144

    PubMed  PubMed Central  Google Scholar 

  111. Yao S et al (2021) Monensin suppresses cell proliferation and invasion in ovarian cancer by enhancing MEK1 SUMOylation. ExpTher Med 22(6):1–10

    Google Scholar 

  112. Tumova L et al (2014) Monensin Inhibits Canonical Wnt Signaling in Human Colorectal Cancer Cells and Suppresses Tumor Growth in Multiple Intestinal Neoplasia MiceMonensin Inhibits Wnt/β-Catenin Signaling. Mol Cancer Ther 13(4):812–822

    CAS  PubMed  Google Scholar 

  113. Leitao R, Rodriguez A (2010) Inhibition of Plasmodium sporozoites infection by targeting the host cell. Exp Parasitol 126(2):273–277

    PubMed  PubMed Central  Google Scholar 

  114. Adovelande J, Schrével J (1996) Carboxylic ionophores in malaria chemotherapy: the effects of monensin and nigericin on Plasmodium falciparum in vitro and Plasmodium vinckei petteri in vivo. LifeSci 59(20):PL309–PL315

    CAS  PubMed  Google Scholar 

  115. Naujokat C, Steinhart R (2012) Salinomycin as a drug for targeting human cancer stem cells 2012. J Biomed Biotechnol. https://doi.org/10.1155/2012/950658

    Article  PubMed  PubMed Central  Google Scholar 

  116. Qi D et al (2022) Salinomycin as a potent anticancer stem cell agent: state of the art and future directions. Med Res Rev 42(3):1037–1063

    CAS  PubMed  Google Scholar 

  117. Klose J et al (2019) Salinomycin: anti-tumor activity in a pre-clinical colorectal cancer model. PLoSOne 14(2):e0211916

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Antoszczak M et al (2014) Synthesis, cytotoxicity and antibacterial activity of new esters of polyether antibiotic–salinomycin. EurJ Med Chem 76:435–444

    CAS  Google Scholar 

  119. Jang Y et al (2018) Salinomycin inhibits influenza virus infection by disrupting endosomal acidification and viral matrix protein 2 function. J Virol 92(24):e01441–e01418

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Raza M et al (2018) Long circulatory liposomal maduramicin inhibits the growth of Plasmodium falciparum blood stages in culture and cures murine models of experimental malaria. Nanoscale 10(28):13773–13791

    CAS  PubMed  Google Scholar 

  121. Rajendran V et al (2015) Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in Culture and P. berghei infection in Murine Malaria. Antimicrob Agents Chemother 60(3):1304–1318

    PubMed  Google Scholar 

  122. Huczyński AJB, Letters MC (2012) Polyether ionophores—promising bioactive molecules for cancer therapy. Bioorg Med Chem Lett 22(23):7002–7010

    PubMed  Google Scholar 

  123. Song X et al (2022) Repurposing maduramicin as a novel anticancer and anti-metastasis agent for triple-negative breast cancer as enhanced by nanoemulsion. Int J Pharm 625:122091

    CAS  PubMed  Google Scholar 

  124. Rausch K et al (2017) Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against Zika virus. Cell Rep 18(3):804–815

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Huang M et al (2018) Aglycone polyether nanchangmycin and its homologues exhibit apoptotic and antiproliferative activities against cancer stem cells. ACS Pharmacol Transl Sci 1(2):84–95

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Patten JJ et al (2022) Identification of druggable host targets needed for SARS-CoV-2 infection by combined pharmacological evaluation and cellular network directed prioritization both in vitro and in vivo. J BioRxiv. https://doi.org/10.1101/2022.04.20.440626

    Article  Google Scholar 

  127. Ali SI et al (2021) Medicinal plants: treasure for antiviral drug discovery. Phytother Res 35(7):3447–3483

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kováč L, Böhmerová E, Butko P (1982) Ionophores and intact cells I. Valinomycin and nigericin act preferentially on mitochondria and not on the plasma membrane of Saccharomyces cerevisiae. Biochim Biophys Acta 721(4):341–348

    PubMed  Google Scholar 

  129. Jaitzig J et al (2014) Reconstituted biosynthesis of the nonribosomal macrolactone antibiotic valinomycin in Escherichia coli. ACS Synth Biol 3(7):432–438

    CAS  PubMed  Google Scholar 

  130. Fiebich K et al (1999) The insecticidal activity of derivatives of the ionophore X-206. Pestic Sci 55(3):379–381

    CAS  Google Scholar 

  131. Jan J-T et al (2021) Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection. Proc Natl Acad Sci USA 118(5):e2021579118

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The V.R. lab is supported by the research grant from Department of Science & Technology (DST), INSPIRE-Faculty Project (DST/INSPIRE/04/2018/003541), Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

KG and VR contributed equally towards the literature survey, data interpretation and preparation of the figures. VR contributed to the overall supervision, design of the review, critical analysis of the intellectual content, revision of the manuscript and funding acquisition. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Vinoth Rajendran.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurukkalot, K., Rajendran, V. Repurposing Polyether Ionophores as a New-Class of Anti-SARS-Cov-2 Agents as Adjunct Therapy. Curr Microbiol 80, 273 (2023). https://doi.org/10.1007/s00284-023-03366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03366-1

Keywords

Navigation